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Abstract

Dynamic obstacle avoidance remains a crucial research area for autonomous systems,
such as Micro Aerial Vehicles (MAVs) and service robots. Efforts to develop dynamic
collision avoidance techniques in unknown environments have proliferated in recent
years. While these methods exhibit impressive and reliable performance in simpler
environments, their efficacy in more challenging settings remains an area ripe for en-
hancement. The difficulty of these environments arises from a multitude of factors,
and currently, no standardized approach exists to quantify this complexity. Addition-
ally, to fairly compare different dynamic collision avoidance strategies, it’s essential to
assess them in environments with a similar degree of difficulty. Therefore, devising a
metric capable of accurately gauging the intricacy of dynamic environments becomes
imperative.

Building on this context, this master’s thesis endeavors to fill this critical gap through
three contributions: 1) The establishment and validation of map difficulty metrics that
represent the difficulty of dynamic environments, 2) The introduction of a robust bench-
marking pipeline to critically validate the representativeness of the proposed metrics
and evaluate various collision avoidance strategies, and 3) The provision of a framework
for comparative analysis of different planning strategies, utilizing the introduced map
difficulty metric.

The proposed survivability metric effectively captures environmental complexity. Its
validity is evidenced by a notable correlation with the success rates of typical collision
avoidance methods, with over 1.7 million collision avoidance trials on over six hundred
maps, securing a Spearman’s Rank correlation coefficient (SRCC) of over 0.9. This
metric serves as an indispensable tool for facilitating fair comparisons in this dynamic
research domain. More importantly, it offers valuable insights for the future refinement
and improvement of dynamic collision avoidance strategies, making a contribution to
the continuous advancement of autonomous systems.
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Chapter 1

Introduction

1-1 Background and Objective

Recently, societal anticipation and expectations regarding the advancement of au-
tonomous systems have surged considerably. Various solutions are proposed to sub-
stitute human involvement in labor-intensive and dangerous tasks, including urban
and suburban package delivery [1] and search-rescue operations [2|. During operational
execution, these systems may encounter dynamic obstacles [3, 4], the details of which
may not be pre-known to the autonomous agents. This situation highlights the critical
requirement for robust dynamic collision avoidance systems, proficient in adapting to
many environmental circumstances and challenges, and an intensified scholarly focus
has been put on this particular domain.

(a) A ground robot trying to navigate (b) A MAV trying to navigate through an environment with
through a crowd of pedestrians [5]. other dynamic obstacles [4].

Figure 1-1: Examples of dynamic collision avoidance scenarios of autonomous systems.
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2 Introduction

One crucial aspect of developing such collision avoidance methods involves performance
evaluation. In domains such as computer vision (CV) and natural language processing
(NLP), standardized datasets and metrics, such as KITTI [6], ImageNet [7], COCO
[8], GLUE [9], and SQuAD [10] have been established to facilitate this process. These
resources, termed benchmarks, offer standardized datasets and evaluation protocols,
enabling comprehensive comparisons between varying methodologies.

However, a dearth of such standardized performance evaluation mechanisms currently
exists for dynamic collision avoidance. Instead, researchers handcraft their custom
testing environment for evaluation like what Figure 1-2 shows.

(b) Matlab Simulation [12] (c) rviz simulation environment with obstacles moving
along preset trajectories [13]

Figure 1-2: Examples of three different environment setups. These various setups make com-
paring proposed methods difficult.

This approach is problematic without indicating how difficult the environment is for
dynamic collision avoidance. An environment difficulty metric is urgently required
in the assessment of a collision avoidance method’s performance for several reasons:

1. Fair Comparison among Different Collision Avoidance methods: Testing
different collision avoidance methods in equivalent setups is pivotal to ensure a
fair comparison. Presently, numerous techniques are implemented across various
simulations. Drawing fair comparisons among these methods remains challeng-
ing without a quantified indicator of environmental difficulty. Incorporating an
environmental difficulty metric paves the way for a more balanced comparison
of disparate method performances, thereby enhancing the overall accuracy and
reliability of the comparative process.

Moji Shi Master of Science Thesis



1-1 Background and Objective 3

2. Evaluation of Collision Avoidance Method Under Different Difficulty
Level: The environmental difficulty significantly affects the method’s perfor-
mance. A system demonstrating flawless collision avoidance in a straightforward
environment might encounter problems in a more complex one.

3. Incremental Refinement of Collision Avoidance Methods: An environ-
ment difficulty metric also assists in incremental method refinement. For exam-
ple, researchers can test their method in a simple environment and gradually
increase the difficulty level. This approach promotes more efficient benchmarking
of progress and illuminates areas requiring additional development.

To design such a representative environment difficulty metric, we need to investigate
the relationship between the metrics and the performance of various collision avoidance
methods. Specifically, each collision avoidance method should correspond to a lower
success rate in environments that score higher on the difficulty metric. Considering
a typical dynamic collision avoidance pipeline depicted in Figure 1-3, the success rate
of an avoidance maneuver depends not only on the external factors (the difficulty of
the environment) but also on the internal factors inherent in the entire navigation
pipeline. These internal factors include perception, prediction, localization, planning,
and control.

| Perception @—@—
E @_/

122> Internal Factors
122> External Factor

Figure 1-3: A typical dynamic collision avoidance pipeline. Dashed lines encircle the internal
(Perception, Prediction, Localization, Planning, and Control) and external (Environment) factors.
The legend describes the color and pattern of each dashed line box.

The internal factors can be categorized into those we assess and those we keep constant.
For instance, the components of perception and control are typically held constant, as
they are dependent on the hardware of the robots or algorithmic design choices that
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4 Introduction

are not under assessment. The planning part we are evaluating would be varied. In
contrast, the difficulty of the environment is the external factor, and this is the difficulty
that our proposed metric is intended to measure.

Therefore, our approach calls for the design of a specialized simulator, which effectively
isolates the influence of the environmental difficulty metric on the success rate of various
collision avoidance methods. This design should effectively minimize the impact of
extraneous factors, thereby allowing for a more accurate and controlled analysis of the
performance of collision avoidance methods in relation to environmental difficulty.

In this master thesis, we will propose environment difficulty metrics for benchmarking
dynamic collision avoidance methods and validate whether they are representative of
the difficulty by experimenting in a custom simulator with typical collision avoidance
methods.

1-2 Related Works

1-2-1 Collision avoidance in unknown dynamic environments

Collision avoidance for Micro Aerial Vehicles (MAVs) operating in dynamic and un-
known environments remains a persistent challenge in the field of robotics. Various
methodologies have been proposed in recent years to address this problem.

Some works assume the future movement of dynamic obstacles is known to the MAV
in advance and focus on the trajectory generation part. Sampling-based methods, such
as those proposed by [14, 15, 16|, generate multiple candidate trajectories by sampling
motion primitives. Among these, the candidate with the minimum cost is selected
and concatenated to form the final trajectory. Notably, [17] proposed a novel strategy
in which the trajectory is generated iteratively towards a sub-goal rather than in a
one-shot manner. The authors in [15] also incorporate the MAV’s dynamics into their
model by generating motion primitives from thrust. On the other hand, optimization-
based methods, such as those in [12, 18, 19], cast the collision avoidance problem into an
optimization framework. These methods define collision avoidance constraints and solve
an optimization problem to generate the desired trajectories. For instance, authors in
[12] model the obstacles as ellipsoids and express the collision avoidance constraints as
the distance between these ellipsoids. Another noteworthy approach is by [20], where
the authors formulate collision avoidance constraints using convex safety corridors.
In recent years, reinforcement learning-based methods have also been applied to this
problem [21, 22, 23, 5]. This represents an exciting direction in collision avoidance and
opens up new possibilities for handling dynamic and unknown environments.

Several other studies have challenged the assumption regarding the anticipated move-
ment of dynamic obstacles. When considering perception for motion planning, dynamic
obstacles need to be continuously tracked to ensure accurate future predictions. Fur-
thermore, areas previously deemed safe could potentially become hazardous if their
status isn’t periodically updated. This isn’t an issue when the field of view (FOV)
spans 360 degrees. Studies such as those by [24, 20] introduced methods for generating

Moji Shi Master of Science Thesis



1-2 Related Works 5

collision-free trajectories within a 360-degree FOV range. However, real-world scenar-
ios often impose FOV limitations on most MAVs. Thus, adding gaze planning, i.e.,
choosing the most advantageous direction for the MAV to look at, becomes necessary.
Studies like [25, 11, 26] have suggested some basic policies, including looking in the
current velocity direction or the target position direction. Although these methods
work well in static environments, they may not guarantee optimal results in dynamic
environments. In order to achieve robust gaze planning in dynamic environments, more
sophisticated methods are proposed by [3, 17, 27, 4, 28]. These studies model the prob-
lem as an optimization problem, assigning handcrafted objective functions to guide the
MAV look toward potentially hazardous directions. For instance, authors in [4] prior-
itize the direction of already observed obstacles likely to collide with the MAV, while
authors in [3] emphasize areas that have remained not updated for extended periods.
Authors of [17] consider different objectives in a multi-objective optimization frame-
work, including the MAV’s current velocity direction, the target position direction, and
the direction of the nearest obstacle.

1-2-2 Collision avoidance performance benchmarking

While the previously mentioned research has significantly advanced dynamic collision
avoidance methods, a key factor for further progress in this field involves objectively
evaluating and comparing these methods. This necessitates benchmarking to assess
their performance and robustness across various conditions accurately.

The most rudimentary benchmarking approach for collision avoidance methods involves
comparing the success rates, as exemplified in studies like [3, 4, 11]. Here, the authors
manually construct the testing environments, demonstrating that their proposed meth-
ods achieve higher success rates. Some studies, such as [29, 30, 31, 32, 33|, have
proposed more standardized benchmarking suites for comparing collision avoidance
methods in randomly generated static environments as well as some metrics utilized to
quantify the difficulty of these static environments such as obstacle density [34, 35] and
traversability [36, 37, 38]. Furthermore, [39, 40, 41, 42] provide benchmarks for testing
in dynamic environments, allowing researchers to compare their methods’ performance
in more diverse scenarios. These benchmarks provide various testing APIs (Application
programming interfaces) for different robots [40] and are built upon high-fidelity simu-
lators like Gazebo [39]. However, they lack a comprehensive set of metrics to quantify
the difficulty of the dynamic environments, and relying solely on the success rate with-
out indicating the difficulty of the environments is insufficient to identify a method’s
strengths and weaknesses. For instance, a method might excel in simple environments,
reflected by a higher success rate, but underperform in more challenging environments.
Consequently, a benchmarking suite for dynamic collision avoidance must incorporate
a wide range of environments, accompanied by metrics that articulate their difficulty
levels. This is the primary motivation for this thesis.
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1-3 Contribution

The contribution of this thesis can be summarized in three parts:

1.

We propose metrics to determine the difficulty of a dynamic environment and
validate their representativeness through experiments.

. We build a custom simulator that allows rapid, versatile tests for dynamic collision

avoidance in 2D cases.

We compare typical dynamic collision avoidance algorithms based on our proposed
metrics and provide intuitions for choosing these methods in different scenarios.

1-4 Organization

The organization of this thesis report is as follows:

Chapter 2 is dedicated to the introduction of the custom simulator’s design,
which is crucial for investigating and testing difficulty metrics. This chapter will
detail the map generator and navigation modules that allow us to recreate and
navigate through different environments with varied complexity levels.

Chapter 3 delves into the definition and motivation of several environment dif-
ficulty metrics, essential for evaluating the complexity of an environment and
hence the performance of different collision avoidance methods. This chapter will
also discuss how these metrics are compared, thereby providing insights into their
applicability and effectiveness in different situations.

Chapter 4 provides a comprehensive overview of the experimental setup and
the subsequent results. Initially, it presents the reasoning behind the selection
of specific parameters and collision avoidance methods utilized throughout the
experiments. It then proceeds to illustrate the performance of various difficulty
metrics and collision avoidance methods within various environments. This ex-
ploration serves to either validate or challenge the concepts that were previously
introduced in preceding chapters and then select metrics that accurately represent
the difficulty of dynamic environments.

Chapter 5 delves deeply into the outcomes of our experimental findings. Through
this discussion, we evaluate the efficacy of each difficulty metric and collision
avoidance technique, emphasizing their relevance in distinct scenarios. Moreover,
we outline specific use cases where the selected difficulty metrics prove to be most
advantageous.

Chapter 6 offers a comprehensive summary derived from our comparison of met-
rics, highlighting the specific conditions under which each metric is most applica-
ble. Additionally, we briefly outline potential avenues for future research aimed
at refining these metrics and advancing the field.
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Chapter 2

Simulator Design

This chapter outlines the design and implementation of a specialized simulator to in-
vestigate the environment difficulty metric. First, we establish the critical requirements
for the simulator, followed by a detailed explanation of its practical implementation,
encompassing elements such as the software platform, map generation, and navigation
modules.

2-1 Requirement Analysis
As discussed in Chapter 1, the proposed simulator must fulfill two primary objectives:

1. It should facilitate fair and efficient testing and comparison of various methods.

2. It should enable the isolation of map difficulty as an independent variable influ-
encing the performance of different methods.

For the first objective, the simulator must possess a standardized API, which enables
various methods to be seamlessly integrated and evaluated within the simulator. Con-
sidering practical scenarios, most MAVs possess a limited Field of View (FOV) due to
their restricted capacity to carry sensors [17]. Consequently, our simulator should be
capable of simulating various methods for both trajectory planning and gaze planning.

Addressing the second objective requires the simulator’s highly modular and simpli-
fied structure. This structure should allow us to discount extraneous factors such as
perception errors, localization errors, control errors, and computational time. We pro-
pose a simulator composed of several vital components, as depicted in Figure 2-1: Map
Generator, Environment Updater, Perception Module, Planning Module, Experiment
Recorder, Map Difficulty Calculator, and Map Analyzer. Each component plays a dis-
tinct role, collectively contributing to the overall function and utility of the simulator.
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’Map Generator }—»’ Difficulty Calculator

*{ Environment Updater ‘

’ Perception Module ‘

4{ Planning Module ‘

’ Experiment Recorder }—>’ Metric Analyzer

Figure 2-1: The pipeline of the metric testing gym.

2-2 Simulation Platform

The entire pipeline is based on the OpenAl gym [43] to reproduce, test, and compare
different methods quickly. OpenAl gym is an environment designed for the training and
implementation of reinforcement learning algorithms. The reason for choosing OpenAl
gym over other high-fidelity simulators, such as AirSim [44] and Gazebo [45], can be
summarized as follows:

1. OpenAl gym uses the classic “agent-environment” loop, a sequential process al-
lowing the pipeline’s modularization.

2. The sequential process also allows us to eliminate some irrelevant factors from
computational time. The computational time is an irrelevant factor to the map
difficulty, but it will be able to affect the performance of different methods.

3. The OpenAl gym is a lightweight simulator that runs faster than other high-
fidelity simulators.
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2-3 Map Generator 9

2-3 Map Generator

The Map Generator can generate different random maps according to the user’s needs.
In this Map generator, the obstacles are modeled as circles, and the user can define
the number of obstacles, the radius of each obstacle, and the maximum speed of each
obstacle like Figure 2-2.

Figure 2-2: One map of obstacles with different sizes and velocities. The red circle represents
the obstacles, and the green line represents the velocities of the obstacles.

The user can also define the motion profile of the obstacles, which is the policy of the
obstacles” movements. The motion profile can be Constant Velocity Model(CVM) and
Reciprocal Velocity Obstacle(RVO) like Figure 2-3.

(a) cvm (b) RVO

Figure 2-3: Two different motion profiles. (a) The CVM is a simple motion profile that the
obstacles move with a constant velocity without considering the interaction among the obstacles.
(b) The RVO implemented by [46] is a more complicated motion profile that the obstacles move
with a constant velocity and avoid collisions with other obstacles.
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10 Simulator Design

We will generate two different datasets for the experiments with the map generator.
The first dataset is the controlled map dataset, where we propose some assumptions
and control a limited number of parameters to generate maps with a wide range of
difficulties. The second dataset is the uncontrolled map dataset, where we eliminate
the assumptions and test the generalization of the difficulty metrics.

Controlled Map Dataset

A wide variety of maps is essential to adequately test the environment difficulty met-
rics. As noted previously, numerous parameters are involved in the map generation
process. To streamline this process and focus on the key aspects of our investigation,
we introduce the following assumptions:

1. The dynamic obstacles are assumed to be circles with the same radius.
2. The velocities of the dynamic obstacles are assumed to be the same.

3. The obstacles are assumed to be moving with a constant velocity.

Then we generate a controlled map dataset by defining the following controlled variables
in Table 2-1.

Parameter Name | Symbol | Explanation

Agent Number Nobs The agent here refers to dynamic obstacles in the en-
vironment. The user can define the number of agents
as MNeps on the map.

Agent Radius Tobs The user can define the radius of the agents. In spe-
cialized maps, the agents are assumed to be circles
with the same radius.

Agent Speed Vobs The user can define the maximum speed of the agents.

Table 2-1: Parameters of the map

Uncontrolled Map Dataset

Following the validation of the environment difficulty metrics on the controlled map
dataset, we aim to evaluate the generalization capacity of these metrics by removing the
imposed assumptions present in the controlled map dataset. Consequently, we generate
a more diverse dataset termed the “Uncontrolled Map Dataset”. The assumptions
about the obstacles’ velocities, the obstacles’ size, and the obstacles’ motion profile are
removed in the uncontrolled map dataset.
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2-4 Navigation Modules

2-4-1 MAV setup

Here we represent the MAV as a 2D circle with radius r,. The MAV has a FOV of
Ofov, Which is a sector with the angle of 6, and the radius of r4,,. The state of the
MAYV is represented as (xy, Yy, ¥u), where (x,,y,) is the position of the MAV and v, is
the heading angle of the MAV. The MAV has a maximum speed of v;,4,, @ maximum
acceleration of @,,4,, and a maximum yaw speed of 1,.

Figure 2-4: Parameters of the MAV. The MAV is represented as a 2D circle with radius 7. The
MAV has a FOV of 8¢,,, which is a sector with the angle of §,, and the radius of r¢,,. The
state of the MAV s represented as (., Yu, ¥y ), Where (24, y,,) is the position of the MAV and
1y, is the heading angle of the MAV.

2-4-2 Perception Module

An occupancy grid map is maintained for the MAV. Each grid m,; in this grid map can
be unexplored, unoccupied, or occupied, which is translated into the value of m;; to be
{—1,0, 1} respectively. The grid type at position (z,y) can be achieved through the
function: m;; = getGrid(x,y). Initially, all of the grids are unexplored. Then similarly
in [47], ray-casting is applied to update the grid in the FOV. We assume that the MAV
has no perception error, which means the grids in the FOV are updated with ground
truth values.

For dynamic obstacles, we further assume that the perception module can distinguish
between static and dynamic obstacles and between different dynamic obstacles. Because
of that, the observed dynamic obstacles are not added to the occupancy grid map, and
no data association is needed for tracking dynamic obstacles. As in [48] and [12],
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12 Simulator Design

constant velocity models(CVM) are assumed for the dynamic obstacles. The tracking
of dynamic obstacles is then achieved by Kalman Filter (KF) [49]. The estimated state
of the dynamic obstacle i is defined as &; = [z, Yi, Vs vy,i]T, where z; and y; are the
estimated position of the dynamic obstacle 7, and v, ; and v, ; are the estimated velocity
of the dynamic obstacle i.

The observation of the dynamic obstacle i is defined as z; = [z;, yi]T. When rays from
the ray-casting hit a dynamic obstacle, the corresponding KF tracker will be updated
with the following equations:

&7 = A%, + B, (2-1)
b =ARAT +Q (2-2)
K;=P H'(HP H" + R)™! (2-3)
Ti =2 + Ki(z — HEy) (2-4)
P=(-KH)P (2-5)

where Z; is the estimated state of the dynamic obstacle i, P; is the covariance matrix
of the states, z; is the observation of the dynamic obstacle i, A is the state transition
matrix, () is the covariance matrix of the process noise, H is the observation matrix,
and R is the covariance matrix of the observation noise. The state transition matrix A
and the observation matrix H are defined as follows:

1 0 At 0
01 0 At
A=1o 0 1 0 (2-6)
00 0 1
1000
H=1lo 10 0 (27)

Where At is the update rate of the environment. The covariance matrix () and R are
defined as follows:

o2 0 0 0
0 o2 0 0

Q=19 0 2 o0 (2-8)
0 0 0 o
(02 0

R = Ox o2 (2_9>
L Yy

Once the dynamic obstacle is in the FOV of the drone, the corresponding KF tracker
will be updated using its ground truth position. If the movement of dynamic obstacles
is simulated using CVM, the KF tracker can accurately estimate the dynamic obstacle’s
position. However, if the movement of dynamic obstacles is simulated using RVO, the
KF tracker cannot give a good estimation if the dynamic obstacle is out of the FOV.
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2-4 Navigation Modules 13

Figure 2-5: Perception of the MAV. Once the obstacles are in the FOV of the MAV, the cor-
responding KF tracker will be active, and the obstacles will be marked as blue circles. The
estimation of the KF tracker is marked as yellow circles.

2-4-3 Planning Module

The Planning Module takes input from the perception module through the KF trackers
with estimated positions and velocities of every observed obstacle. With the tracker
information, the future prediction of dynamic obstacles can be achieved for collision
detections.

The output of the planning module is composed of future trajectories and the yaw
angle velocity for the next time step from the trajectory planner and the gaze planner,
respectively.

Trajectory Planner

In the course of this research, several trajectory planning algorithms have been imple-
mented. These implementations were realized by extending a base class, traj_planner,
and specifically by overriding two of its methods: plan and replan_check. Utilizing
this object-oriented approach enabled leveraging code reuse and maintaining a consis-
tent interface across different planning algorithms, facilitating the ease of comparing
and evaluating their performances.

At each timestep, the replan_check method is invoked to assess whether a new trajec-
tory is warranted. This determination is contingent on the type of planner in operation.
Local planners utilize a predefined update rate, such as initiating a replan every 5 sec-
onds, whereas global planners evaluate the validity of the current trajectory following
the incorporation of newly received perception data. If the replan_check method
ascertains the necessity for a new trajectory (i.e., it returns True), the plan method
is engaged to generate this new path. A successful planning execution will result in
the plan method returning True, triggering the implementation of the newly created
trajectory. In the event of planning failure, the drone engages a braking maneuver and
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14 Simulator Design

Algorithm 1 Trajectory Planning
1: Initialize: fail count < 0, state_machine < ‘PLANNING’
2: while not done do
3: recheck_flag < TRAJ__PLANNER.REPLAN__CHECK(drone)

4: if recheck_flag is True then

5: state_machine < ‘PLANNING’

6: planning _success <— PLANNER.PLAN(drone, dt)
T if planning_success not True then
8: DRONE.BRAKE

9: state__machine + ‘PLANNING’
10: fail _count < fail _count + 1

11: else

12: state_machine <+ ‘EXECUTING’
13: fail_count < 0

14: end if

15: end if

16: end while

attempts to replan the trajectory in the next iteration. If the planning failure persists
for a predefined number of consecutive iterations, the process is terminated with a
deadlock state.

Gaze Planner

The gaze planner is designed to operate at each time step, constituting a crucial aspect
of our dynamic navigation framework. This planner intakes a comprehensive snapshot
of the current observations, which encapsulates information about the observed obsta-
cles, the MAV’s current position and velocity, and the planned future trajectory. Based
on these inputs, the gaze planner computes the yaw angle velocity output for the next
time step.

2-5 Result Recorder

Once a process is terminated, the experiment recorder will save the experiment data
into a .csv file. The experiment data includes the following information:

Table 2-2: Sample data from experiments

Parameter Experiment 1 Experiment 2
Gaze Planner LookAhead Owl

Planner Primitive MPC

Motion Profile CVM RVO

Map ID 0 1

Agent size 0.5 0.5
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Table 2-2: Sample data from experiments

Parameter Experiment 1 Experiment 2
Number of agents 10 10
Agent speed 2 2
Drone speed 4 4
Initial position (4, 4) (4, 4)
Target position (4, 25) (4, 46)
Flight time 9.8 12.9
Grid discovered 361 544
Agent tracked 1 2
Agent tracked time 4.0 3.05
Success 1 0
Static Collision 0 0
Dynamic Collision 0 1
Freezing 0 0
Dead Lock 0 0
State Machine 1 3

For each experiment, the experiment recorder will record the experiment results, in-
cluding the flight time, unknown grid discovered, agent tracked, and agent tracked
time. FEach experiment will terminate in one of the following states: success, static
collision, dynamic collision, freezing, and deadlock. Freezing is when the MAV cannot
reach the target position in the given time. Deadlock is when the MAV fails to replan
for a predefined number of consecutive iterations. The experiment recorder will also
record the state machine state at the end of the experiment to indicate the reason for
the collision.

2-6 Summary

The proposed simulator for investigating the environment difficulty metric consists of
several components: the Map Generator, Environment Updater, Perception Module,
Planning Module, Experiment Recorder, Map Difficulty Calculator, and Map Ana-
lyzer. It provides a modular and simplified structure for reproducing dynamic collision
avoidance methods and evaluating the environment difficulty metric.

In the experiments, we will use the simulator to generate maps with different difficulty
levels and evaluate the performance of the dynamic collision avoidance methods. The
results will be analyzed to determine the correlation between the environment difficulty
metric and the performance of the dynamic collision avoidance methods.
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Chapter 3

Difficulty Metric Design

Building on the testing environment outlined in Chapter 2, we now turn our atten-
tion to the core concept of environment difficulty metrics. This chapter will introduce
the proposed metrics, underpinned by an evaluation methodology that aims to pro-
vide a comprehensive understanding of each metric’s functionality and effectiveness.
We delve into the rationale behind these metrics, exploring their underlying assump-
tions and evaluating their feasibility within the context of dynamic collision avoidance.
This discussion sets the foundation for a systematic approach toward understanding
and quantifying map difficulty, ultimately contributing to a more reliable and robust
benchmarking process.

3-1 Metric Design

We now introduce six different metrics for evaluating the difficulty of dynamic en-
vironments, including Obstacle Density, Traversability, Dynamic Traversability, VO
Feasibility, Survivability, and Global Survivability.

3-1-1 Obstacle Density

Obstacle density is a widely used metric in collision avoidance in static environments
[50, 51]. It is defined as the ratio between the area of obstacles and the area of the
map:

N A.

D = =1

Ao (3-1)

where A, is the area of the i-th obstacle, N is the number of obstacles, and A4,,,, is the
area of the map.
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18 Difficulty Metric Design

3-1-2 Traversibility

In [36], the authors proposed a metric called traversability for static environments. The
traversability is calculated by sampling positions and heading directions of the MAV
and averaging over the furthest distance the MAV can travel without colliding with
any obstacles. The traversability is defined as:

1 N
T:f dl —2
N; (3-2)

where d; is the furthest distance the MAV can travel without colliding with any obstacles
at the i-th sample, and N is the number of samples.

Figure 3-1: Traversability sample on a generated dynamic map. The blue arrow lines represent
the furthest distance the MAV can travel without colliding with any obstacles in certain directions
from the sampled position.

3-1-3 Dynamic Traversability

Since we are working on a dynamic map, the traversability at each time step might dif-
fer. We improve it by introducing the concept of dynamic traversability. The dynamic
traversability is calculated by sampling time step and averaging the traversability over
the sampled time steps:

1 M N
T= W;};di(tj) (3-3)
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3-1 Metric Design 19

where d;(t;) is the furthest distance the MAV can travel without colliding with any
obstacles at the i-th sample at time step ¢;, N is the number of samples, and M is the
number of time steps.

3-1-4 VO Feasibility

[52] proposed the velocity obstacle (VO) concept for multi-agent collision avoidance
tasks. The VO is defined as the set of velocities that will result in a collision with the
other agent. Assuming the ego-robot is A and a dynamic obstacle is B, the VO for A
considering collision with B is:

VOp = {v3|3t > 0: (64 — vp)t € D(pp — pa,ra+15)} (3-4)

where v} and vp are the velocities of A and B, py and pp are the positions of A and
B, r4 and rp are the radius of A and B, and D(pp — pa, 74 + rp) is the disk centered
at pp — pa with radius r4 + rg. The VO is illustrated in Figure 3-2.

Figure 3-2: Velocity obstacle (VO) for collision avoidance [52].

The union of the VO of all the obstacles becomes the region from which the ego-robot
cannot pick a velocity. Intuitively, the larger the VO area is, the more difficult the
environment is for collision avoidance. Therefore, we propose a VO feasibility metric
to measure the difficulty of the dynamic environment. It is calculated by:

1. Sampling positions in the dynamic environment
2. Sampling the possible velocities for each position

3. Calculating the proportion of the sampled velocities that are not in the VO of any
obstacles

One example of calculating the VO feasibility at one sampled position is shown in
Figure 3-3. Velocities are uniformly sampled in the [0, v;,4,] range and in all directions.

In this case, the proportion of feasible velocities is 7 Zf ;n“; — = 0.75. The VO

feasibility is calculated by averaging over all the sampled positions.

i N nfeasible (Z)

N = Npeasivie(t) + Ninfeasivie (1)

F= (3-5)
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Figure 3-3: Example for calculating the VO feasibility at one sampled position. The yellow dots
are feasible, and the blue dots are infeasible sampled velocities. The shadow area is the infeasible
area of VO.

3-1-5 Survivability

While the traversability metric offers a viable measure of difficulty for static environ-
ments [36], its effectiveness diminishes in dynamic settings. In dynamic environments,
the challenge of collision avoidance is intricately intertwined with the density of obsta-
cles and their velocities. Unfortunately, this crucial element remains unaddressed in
the current traversability metric, highlighting a critical limitation in its applicability to
dynamic scenarios. Thus, we need a more comprehensive metric to accurately capture
dynamic environments’ complexity.

Therefore, we propose a survivability metric to measure a dynamic map’s collision
avoidance difficulty. In survivability calculation, we sample some positions on the map
and put the static MAV at the sampled places for T,,,,,. The survivability is calculated
by averaging the surviving time of these static MAVs:

1

S=N

Z min(¢;, Thnaz) (3-6)

=1

where t; is the surviving time of the MAV at the i-th sample, and N is the number of
MAYV samples. Intuitively, if the obstacles move faster, they can cover more areas in
the same period. Therefore, the survivability of the MAV will be lower.

3-1-6 Global Survivability

In case the obstacles are moving very slowly, the survivability metric might not be able
to capture the difficulty of the entire map. Therefore, we introduce the concept of
global survivability. Instead of posing one static MAV at each sample, we put N MAVs
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3-2 Metric Evaluation 21

Figure 3-4: Example for calculating the survivability. The MAV is put at the sampled positions
for Tyaz, and the surviving time of each sample is recorded. At represents the update time of
the dynamic map.

around the map at K different timesteps and terminate the process when anyone of
them collides with an obstacle. Global survivability is defined as:

1 XK o )
§ = 2= Yo mint 5. ..ty Tonas) (3-7)
j=1

where t/ is the surviving time of the n-th MAV at the j-th timestep, and K is the
number of samples of timesteps.

3-2 Metric Evaluation

Assuming we have a map pool containing n different maps, each denoted by M;. The
map pool can be represented as M = {M;, Ms, ..., M, }. m different planners are tested
on these maps. The map difficulty metric is defined as a function D that maps a map
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M; to a real number D(M;) and the success rate of a planner j on map M; is defined as
SR;;. We can introduce two quantitative indicators for evaluating representativeness:

Spearman’s Rank Correlation Coefficient(SRCC): This metric measures the
monotonic relationship between two variables. Principally, a good metric D(M;) should
show a good monotonical relationship with the success rate SR;; for each planner j.
The Spearman’s Rank Correlation Coefficient Srcc; for planner j is defined as:

630 (R(D(My) — R(SRyj))?
n(n?—1)

where the R(D(M;)) and R(SR;;) are the rank of D(M;) and SR;; in all the sampled
data respectively. The Srece; is between —1 and 1. The larger the |Sree,| is, the more
monotonically related the D(M;) and SR;; are. Since a good difficulty metric should
have this monotonical relationship with the success rate for every planner, we will use
the average of Srcc; as the representativeness of the map difficulty metric D(A/;):

(3-8)

Srce; =1 —

1 m
Srce=—>_ Sree; (3-9)
m =

Coefficient of Variation(CV): This metric measures the variation of the success rate
SR;; under the same map difficulty level. We want to know whether the performance
of one specific planner under different maps with the same difficulty level is stable. The
maps are made into groups according to the map difficulty metric. For example, if the
range of the function D is [0, 10], we will divide the maps into ten groups:

M, = {M|D(M;) € [k, k + 1]} (3-10)

For each group My, we can calculate the Coefficient of Variation C'vj; for planner j:

Cujp = 2% (3-11)

Hijk
where o, is the standard deviation of the success rate SR;; in group M, and pj is
the mean of the success rate SR;; in group My. The Cwvj;, is between 0 and 1. The
smaller the C'vjj, is, the more stable the performance of planner j is under the same
map difficulty level. Since we want to have this stability for every planner, we will use

the average of C'v; as the representativeness of the map difficulty metric D;:

Co— L > Cujk (3-12)
mi3

3-3 Summary

In Chapter 3, we introduced a range of metrics designed to evaluate the difficulty of
maps in the context of dynamic collision avoidance. These metrics were presented with
a detailed explanation, illustrating the principles and assumptions.
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Complementing the discussion of these metrics, we introduced a methodology for eval-
uating their effectiveness. This method treats the task of assessing map difficulty as
a function that maps from a given map to a set of quantitative indicators. Through
this approach, we sought to provide a comprehensive and flexible framework for under-
standing and quantifying the challenges presented by dynamic environments.

With the metrics and evaluation method, we are now ready to execute the experiments
and analyze the results in the simulator developed in Chapter 2.

Master of Science Thesis Moji Shi



24

Difficulty Metric Design

Moji Shi

Master of Science Thesis



Chapter 4

Experiments

This chapter is first devoted to elaborating the experimental design tailored to assess
the performance of the metrics outlined in Chapter 3. Our focus will be on reproducing
a variety of trajectory and gaze planners, which will then be tested across two distinct
map datasets as described in Section 2-3.

Following the testing of various planners, we will proceed to compute the associated
metrics for each map. The objective is to delineate a relationship between these derived
metrics and the success rate of the planners. This exploration offers a comprehensive
insight into how specific difficulty metrics influence or correlate with the performance
of various planner algorithms in the context of dynamic collision avoidance.

The rationale for recreating multiple planners is grounded in our pursuit of a universal
and robust understanding of map difficulty. Essentially, we seek to validate the notion
that the relationship between planner performance and difficulty metric is not contin-
gent upon a specific planner. Instead, it should maintain consistency across various
planners, providing a universally applicable measure of map difficulty.

4-1 Experiment Setup

In this section, general experiment setups will be introduced. We first list the general
parameters that remain constant throughout all the experiments and justify our choice.
Here the choice of parameters is listed in Table 4-1, including the general environment
setups and the MAV properties. Here we will define the size of the entire map, the map
resolution(size of one grid in the occupancy map), the update rate of the environment,
the collision radius of the MAV, the maximum acceleration of the MAV, and the start
and target position for the planning tasks.

When choosing the parameters for FOV, we will consider two scenarios: 1) the MAV
has 360-degree FOV, and 2) the MAV has a limited FOV. In the first scenario, we
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Parameter Name Symbol Choice
Map Size I xXw 50m x 50m
Map Resolution — 1m
Update Rate At 0.1s

(a) Parameters of the map
Parameter Name Symbol Choice
MAYV radius Tu 1m
MAV Acceleration Umaz 4m /s
FOV range 0 fov 90° or 360°
FOV radius T fou 8m
Yaw angle velocity Uy 1.4rad/s
Start Position x4(0) and y,,(0) {4m, 25m,46m}
Target Position x¢ and y; {4m, 25m,46m}

(b) Parameters of the MAV

Table 4-1: Experimental parameters for the map and MAV

assume that the MAV is equipped with multiple cameras or Lidars, which can cover
the entire space of a certain range. In the second scenario, we assume that the MAV
is equipped with an intel real-sense d455 camera with a horizontal FOV of 90°. The
range of the FOV is set to 8m, within which the depth information is reliable. The yaw
angle velocity is set to 1.4rad/s. According to [17], if the relative tangential velocity
of the obstacles to the camera v is larger than 6m/s, the depth information is not
reliable. We assume that one obstacle is 4m far away from the MAV (half of the FOV
range, we want to have more accurate results within this range). To ensure the depth
estimation error is less than 0.3m, the maximum yaw angle velocity is calculated by:

Yy = % = 1.5rad/s. Considering the movement of the obstacle and the MAV, we set
this number smaller to 1.4rad/s.

Given our primary aim to examine the difficulty metrics through their relationship with
the performance of various planners, it becomes imperative to reproduce these planners
initially. As delineated in Section 2-4, this includes both trajectory and gaze planners.

4-1-1 Trajectory Planner

Table 4-2 shows a list of reproduced trajectory planners. The following part will intro-
duce the implementation details of each planner.

Planner Planning Scope | Methodology Reference
Global Motion Primitives Global Planner | Sampling-based [14]
Local Motion Primitives Local Planner Sampling-based [17]
Model Predictive Control Local Planner Optimization-based | [12]

Table 4-2: Reproduced trajectory planners.
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Global Motion Primitives

Global Motion Primitives [14] is a sampling-based method for trajectory generation.
The basic idea is to sample a set of motion primitives, use a cost function to evaluate
each primitive, and then select and concatenate the primitives into an entire smooth
trajectory. The detailed implementation of this planner is shown in Appendix A-1.

The replanning check of this planner is to check if the future trajectory will be in
collision with the dynamic obstacles according to their predictions from the KF trackers
introduced in Section 2-4-2. The planning process can be demonstrated in Figure 4-1.

Figure 4-1: Example of Global Motion Primitives. The white line denotes the future trajectory.

Local Motion Primitives

Local Motion Primitives [17] is a local motion primitive planner. Instead of generating
an entire trajectory to the target position, the planner only generates a short trajec-
tory to the next waypoint and optimizes a heuristic cost function to select the next
waypoint. The planning process can be demonstrated in Figure 4-2, and the detailed
implementation is shown in Appendix A-2.

Model Predictive Control

In [12], dynamic collision avoidance is formulated into Model Predictive Control. In
this planner, the dynamic obstacles are modeled with ellipsoids, and the constraints are
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Figure 4-2: Example of Local Motion Primitives.

formulated as the distance between the MAV and the ellipsoids. The planning process
can be demonstrated in Figure 4-3. The detailed implementation of this planner is
shown in Appendix A-3.

4-1-2 Gaze Planner

Referring to Section 2-4-1, the gaze planner updates the MAV v, yaw angle. It takes
the MAV’s current state and observation, then outputs the yaw angle speed 1, for the
next time step. The yaw angle is updated by 1@« = 1, + ¢, At. The direction of the
updated yaw angle is denoted as d, = {cos(wr + %At) sin (v, + %At)} .Multiple gaze
planners are implemented in this work, including the following:
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Figure 4-3: Example of Model Predictive Control.

Gaze Planner Reference
LookAhead [25, 27]
LookGoal [26, 53]
Rotating -

Finean et al. 3]

Owl [17]

Table 4-3: Reproduced trajectory planners.

LookAhead

LookAhead planner is a simple planner that aligns the heading of the MAV to the
direction of current velocity d, = [;i:r y'r}. It can be formulated as the following
optimization problem:

n:bm arccos (%) (4-1)
s.t. z/}r < {_amam ¢max} (4_2>
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LookGoal

LookGoal planner aligns the heading of the MAV to the direction of the target position
dy = vy —xp Y — yr}. It can be formulated as the following optimization problem:

nllz}irn arccos (%) (4-3)
s.t. %br € [_¢max7 @Z}max] (4_4)

Finean et al.

Finean et al. [3] is an optimization-based gaze planning method. Two voxel grid maps
are maintained. One is the “Last Time Observed Map” t;, representing when the voxel
1 is last observed. The other is the “Future Occupancy Map” v;, which represents
whether the MAV will occupy the voxel i in the future. Each voxel is assigned the
value:

v {O if the future trajectory does not occupy the voxel (4-5)

7 if the future trajectory occupies the voxel at time step 7

One example of the two grid maps at one moment is shown in Figure 4-4. With the
two maps, the planner calculates the reward for each voxel i as:

c1 O<v; <7y and t; > 7.
r; = < Co v; >71s and t; > T, (4-6)

max(cst;, 1) 0 < otherwise

where Ty, 7., ¢1, ¢2, and c3 are hyperparameters. The planner then selects the yaw angle
velocity 1, that maximizes the reward in the FOV:

@r = argmax Z T (4'7)
Yr ieFOV(dy)

Owl

Owl planner is proposed in [17]. It also considers gaze planning as an optimization
problem. Compared to the Oxford planner, the Owl planner considers more factors in
a dynamic environment. Four directions are prioritized in four cost functions f; to f4:
the direction of the target position, the direction of the current velocity, the direction
of the observed dynamic obstacles, and the direction that has not been updated for
a period. The last cost function f5 is defined so that the yaw angle velocity v, is
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(a) Two voxel grid maps maintained in [3]. The left is the “Last
Time Observed Map” t;; Darker color means the voxel is observed
more recently. The map on the right is the “Future Occupancy Map”
v;. The future trajectory is projected onto the map. The darker color
means the MAV will occupy the voxel in the nearer future.

(b) The environment where the two maps
above are generated.

Figure 4-4: Example of Oxford planner. One example of the two grid maps in the cost function
at one moment is shown.

not too large. Finally, the gaze planning problem is formulated as a multi-objective
optimization problem:

min i i fildy) (4-8)
r =1
s.t. @br S {_w.maxa 7wbma:(:} (4_9)

4-2 Experiments in the Controlled Map Dataset

4-2-1 Parameter Setups

As introduced in Section 2-3, several parameters are used to control the map generation
in Controlled Map Dataset. Here the choice of these parameters is listed:
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Parameter Name Symbol Choice
Agent Number Nobs {10, 20, 30}
Agent Radius Tobs {0.5,1,1.5} m
Agent Speed Vobs {2,4,6} m/s
Agent Motion Profile - CVM

(a) Parameters of the map
Parameter Name Symbol Choice
MAYV Speed Umag {2,4,6}m/s

(b) Parameters of the MAV

Table 4-4: Experimental parameters for the map and MAV

According to this parameter setup, we have three distinct setups for ngps, Tobs, Vobs and
thus have 3 x 3 x 3 = 27 different map setups in total. We generate 20 different maps
for each map setup by modifying random seeds. Therefore, we have 27 x 20 = 540
maps in the controlled map dataset. We run multiple experiments on each map with
different MAV setups and starting and target positions. Each map has nine candidate
positions and 9 x 8 = 72 combinations of distinct start and target positions. We will
also test each planner with three different maximum MAV speed v,,4.. Thus, we run
3 X 72 = 216 experiments for each planner and map.

4-2-2 Experiment Results

In this section, we will show the experiment results of the correlation between different
metrics and the success rate under all maps in the controlled map dataset. We will
apply two pre-processing methods for every metric: normalization and reverse. The
normalization method is to normalize the metric value to the [0, 10] range. For metric
m, the normalized value is calculated by:

My = —Tmin (4-10)

Mmaz — Mmin

The reverse method is to make the metric represent the map’s difficulty according to
the SRCC value. Specifically, we want to have a lower success rate for maps with higher
metric values. We reverse the metric value by:

(4-11)

—_— 10 — mpopm  if Srec(mpopm, SR) > 0
" Y M if Srec(mporm, SR) <0

Then we will show the correlation figures between the metric and the success rate. The
x-axis is the pre-processed metrics, and the y-axis is the success rate. Different colors
denote different planners. The light-colored band surrounding the curve represents one
standard deviation (or one sigma) of the success rate of each planner under each level
of the difficulty metric.
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Obstacle Density Difficulty Metric
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Figure 4-5: Correlation between obstacle density metric (3-1-1) and success rate

Traversability Difficulty Metric
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Figure 4-6: Correlation between traversability metric (3-1-2) and success rate
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Dynamic Traversability Difficulty Metric
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Figure 4-7: Correlation between dynamic traversability metric (3-1-3) and success rate
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Figure 4-8: Correlation between sparse survivability metric (3-1-5) and success rate
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Dense Survivability Difficulty Metric
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Figure 4-9: Correlation between dense survivability metric (3-1-5) and success rate
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Figure 4-10: Correlation between global survivability metric (3-1-6) and success rate
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VO Feasibility Difficulty Metric
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Figure 4-11: Correlation between VO feasibility metric (3-1-4) and success rate
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Figure 4-12: Correlation between dense VO feasibility metric (3-1-4) and success rate
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Comparison between metrics

According to Section 3-2, we evaluate the metrics on the controlled map dataset using
the mentioned quantitative indicators.

Difficulty Metric Spearman’s Rank | Coefficient Computational
Correlation Coef- | of Variation | Time
ficient(SRCC) (CV)

Obstacle Density 0.501 + 0.068 0.571 +0.193 2s

Traversability 0.511 £+ 0.068 0.568 +0.184 7s

Dynamic Traversability 0.551 £ 0.073 0.516 £0.173 30s

Survivability (sparse) 0.932 £ 0.023 0.230 £ 0.095 20s

Survivability (dense) 0.941 4+ 0.025 0.211 £ 0.087 | 90s

Global Survivability 0.607 £ 0.044 0.242 +0.078 20s

VO feasibility(sparse) 0.651 +0.077 0.461 £ 0.161 7s

VO feasibility(dense) 0.658 +0.077 0.473 £ 0.165 15s

Table 4-5: For each planner, we evaluate the metrics using the quantitative indicators men-
tioned in Section 3-2: Spearman’s Rank Correlation Coefficient(SRCC), Coefficient of Variation
(CV). These metrics can reflect the correlation between the metrics and the success rate. The
computational time is the time to compute the metric for each map.

The comparison between different metrics can also be shown in Figure 4-13.

Srce Cv

Traversibility 4 Traversibility

Obstacle Density A Obstacle Density A

Global Survivability 1

VO feasibility (sparse) 1 VO feasibility (sparse)

Dynamic Traversibility A D—| Dynamic Traversibility 1 I—E:H
ID—| Global Survivability A I—[:l-l
VO feasibility(dense) 1 D—| VO feasibility(dense) 1 I—[:'ﬂ

Survivability(sparse) 1 Survivability (sparse) 1

Survivability(dense) 1 I'D'I Survivability(dense) 1
10 02 04 06 08
Figure 4-13: Boxplot of SRCC and CV of the metrics. If the SRCC is close to 1, the metric

highly correlates with the success rate. If the CV is close to 0, the performance of planners under
different maps with the same metric value is similar.
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4-3 Experiments in the Uncontrolled Map Dataset

Through the evaluation results from the Controlled Map Dataset, only the survivability
metric has demonstrated a high correlation with the success rate. Thus, we will further
test the survivability metric on the Uncontrolled Map Dataset. Specifically, there will
be three different categories of environments:

1. the environment of obstacles with various velocities
2. the environment of obstacles with various sizes

3. the environment of obstacles with a different motion profile RVO

4-3-1 Environment of obstacles with various velocities

To test the survivability metric on the environment of various obstacles of various
velocities, we generate 45 maps in which the obstacle number is chosen from {10, 20, 30},
the obstacle size is chosen from {0.5,1.0,1.5}m, and the obstacle velocity is randomly
sampled from [2,6]m/s. The survivability metric is computed for each map. The
scatter plot of the survivability metric and the success rate is shown in Figure 4-14.
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0.8 1
% 0.6 1
[aet
wn
&
3
& 0.4
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0 2 4 6 8 10
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Figure 4-14: Scatter plot of the survivability metric (3-1-5) and the success rate on the environ-
ment of obstacles with various velocities. The curves are fitted curves from the controlled map
dataset. The scatters are the survivability metric and the success rate on the uncontrolled map
dataset.

Here three different planners are tested on the uncontrolled map dataset. The Full-
Range+Local Primitive and Ozford+Global Primitive are chosen for having the best
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and worst performance on the controlled map dataset. The LookAhead+MPC is cho-
sen for having a different trajectory and gaze planner and increasing diversity. The
results of the proportion of data points within one standard deviation, two standard
deviations, and three standard deviations from the Gaussian distribution fitted in the
controlled map dataset are shown in Table 4-6.

Type of Map Within 1 ¢ | Within 2 ¢ | Within 3 ¢
Controlled 68% 95% 99.7%
Uncontrolled (Different Velocities) 76.3% 98.5% 100%

Table 4-6: The percentage of Uncontrolled Map Dataset data points(with various obstacle
velocities) within one standard deviation, two standard deviations, and three standard deviations
from the Gaussian distribution fitted in Controlled Map Dataset.

4-3-2 Environment of obstacles with various sizes

To test the survivability metric on the environment of various obstacles of various
sizes, we generate 45 maps in which the obstacle number is chosen from {10, 20, 30},
the obstacle velocity is chosen from {2,4,6}m/s(All obstacles in one map have the
same velocity), and the obstacle sizes are randomly sampled from [0.5,1.5}m. The
survivability metric is computed for each map. The scatter plot of the survivability
metric and the success rate is shown in Figure 4-15. The testing planners are chosen
the same as in the previous section.

1.0
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0.0 T T . T

0 2 4 6 8 10
Survivability Difficulty Metric

Figure 4-15: Scatter Plot of Survivability Metric (3-1-5) and Success Rate in Maps with Various
Obstacle Sizes. The curve is the fitted curve from the controlled map dataset. The scatters are
the data from the uncontrolled map dataset.
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The results of the proportion of data points within one standard deviation, two standard
deviations, and three standard deviations from the Gaussian distribution fitted in the
controlled map dataset are shown in Table 4-7.

Type of Map Within 1 ¢ | Within 2 ¢ | Within 3 ¢
Controlled 68% 95% 99.7%
Uncontrolled (Different Sizes) 71.1% 94.8% 100%

Table 4-7: The percentage of Uncontrolled Map Dataset data points(with various obstacle sizes)
within one standard deviation, two standard deviations, and three standard deviations from the
Gaussian distribution fitted in Controlled Map Dataset.

4-3-3 Environment of obstacles with RVO motion profiles

To test the survivability metric on the environment of obstacles with RVO motion
profiles, we generate 45 maps in which the obstacle number is chosen from {10, 20, 30},
the obstacle velocity is chosen from {2,4,6}m/s(All obstacles in one map have the
same velocity), and the obstacle sizes are randomly sampled from [0.5,1.5}m. The
survivability metric is computed for each map. The scatter plot of the survivability
metric and the success rate is shown in Figure 4-16. The testing planners are chosen
the same as in the previous section.

The results of the proportion of data points within one standard deviation, two standard
deviations, and three standard deviations from the Gaussian distribution fitted in the
controlled map dataset are shown in Table 4-8.

Type of Map Within 1 ¢ | Within 2 ¢ | Within 3 ¢
Controlled 68% 95% 99.7%
Uncontrolled (RVO) 63.7% 92.5% 98.0%

Table 4-8: The percentage of Uncontrolled Map Dataset data points(with RVO motion profile)
within one standard deviation, two standard deviations, and three standard deviations from the
Gaussian distribution fitted in Controlled Map Dataset.

4-4 Summary

In this chapter, we have introduced the experiments in the controlled and uncontrolled
map datasets. The survivability metric has demonstrated a high correlation with the
success rate in the controlled map dataset and is thus further tested in the uncontrolled
map dataset. We will discuss the findings in the next chapter.
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4-4 Summary
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(a) Scatter Plot of Survivability Metric (3-1-5) and Success Rate of Local Primitive and

MPC in Maps with RVO Motion Profiles.
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(b) Scatter Plot of Survivability Metric (3-1-5) and Success Rate of Global Primitive in

Maps with RVO Motion Profiles.

Figure 4-16: The environment of obstacles with RVO motion profiles.
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Chapter 5

Discussion

In this chapter, we dive into the results of our experiments conducted in the previous
chapter. Our primary focus is to assess how suitable each metric is for evaluating
the complexity of environmental maps. We pinpoint the specific situations where each
metric works best and explain the reasons for their performance. Also, we introduce
possible real-world applications of these metrics, using examples to make them easier to
understand. Our goal, through a thorough analysis, is to build a detailed understanding
of how these metrics can be used and why they’re essential in the field of collision
avoidance research.

5-1 Scope of Metrics for Environmental Difficulty Evaluation

Certain assumptions were considered during the experimental design phase in the pre-
vious chapter. These assumptions define the limitations and the range of applications
for the proposed metrics:

1. The environment under consideration is 2-dimensional.
2. The environment solely contains dynamic obstacles.

3. Perception and control errors are not taken into account.
Additionally, our experiments’ findings have led to identifying specific constraints re-
lated to the scope of each metric’s application. These constraints will be explored in

the following sections.
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5-1-1 Obstacle Density

Obstacle density is frequently employed as a metric to illustrate the difficulty of an
environment. This has been demonstrated in various studies such as [50, 51], where
the consensus is that a higher obstacle density in static environments makes collision
avoidance more challenging. However, our experimental results show a different trend
for dynamic environments in Table 5-1. The Spearman’s Rank Correlation Coefficient
(SRCC) between the obstacle density and the success rate is only 0.501, suggesting that
in a dynamic environment, an increase in obstacle density doesn’t necessarily result in
a lower success rate of collision avoidance. The Coefficient of Variation (CV) for the
obstacle density stands at 0.577, indicating that even under the same obstacle density,
the success rate of collision avoidance can exhibit significant variance across different
maps.

Difficulty Metric SRCC CvV
Obstacle Density | 0.501 £ 0.068 | 0.577 + 0.204

Table 5-1: The correlation between obstacle density metric and success rate in all maps from
the controlled map dataset. The obstacle velocities can be different on different maps.

The obstacle density metric primarily serves as a measure of difficulty for static envi-
ronments. Hence, the relatively low correlation observed between obstacle density and
success rate in dynamic environments is chiefly attributable to the fact that obstacle
density does not account for obstacle velocity. In dynamic environments, obstacle ve-
locity is vital to collision avoidance performance. To illustrate this point, we depict the
performance of various planners under different obstacle velocities in Figure 5-1.

Performance under different obstacle velocities

BN Success
=3 Deadlock
B Collision
0.84

0.6

Rate

0.4+

0.24

0.0-

2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6
Global Primitive Global Primitive Global Primitive Global Primitive Global Primitive Local Primitive  Local Primitive  Local Primitive
FullRange LookAhead LookGoal owl Oxford FullRange LookAhead Owl

MPC MPC
FullRange LookAhead owl

Figure 5-1: The performance of planners under different obstacle velocities. Each group rep-
resents the performance of different planners, and each bar under one group represents different
obstacle velocities, specifically 2.0 m/s, 4.0 m/s, and 6.0 m/s.

Our results show that the performance decreases significantly for each planner as the
obstacle velocity increases. However, the current calculation for obstacle density does
not account for obstacle velocities, leading to its low correlation with the success rate.
Thus, it underscores the importance of integrating dynamic factors such as obstacle
velocity when assessing environmental difficulty in dynamic scenarios.
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We categorized the maps into three groups based on their obstacle velocities to further
dissect the relationship between obstacle density and the success rate. We then eval-
uated the relevance of the obstacle density metric within each of these groups. The
results are depicted in Table 5-2.

Obstacle Velocity SRCC Ccv
2.0 m/s 0.783 +0.045 | 0.075 £ 0.026
4.0 m/s 0.784 +0.030 | 0.158 + 0.050
6.0 m/s 0.758 +£0.029 | 0.272 £+ 0.109

Table 5-2: After dividing the controlled map dataset into three groups according to the obstacle
velocity setup, the correlation between the obstacle density metric and the success rate in each
group. It has been significantly improved compared with Table 5-1

After segregating the map dataset into three subsets based on the defined obstacle
velocities, we noticed a substantial improvement in the correlation between the obstacle
density and success rate within each group. This enhancement in correlation, when
compared with the results presented in Table 5-1, indicates the increased effectiveness of
the obstacle density metric when used within a controlled obstacle velocity environment.
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—— All obstacle velocities
0.8 0.8
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wn w0
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Traversibility Difficulty Metric Traversibility Difficulty Metric

(a) The correlation between obstacle density metric and (b) The correlation between obstacle density metric and
success rate in all maps from the controlled map dataset. success rate in each group of maps. Each group includes
maps with the same obstacle velocity.

Figure 5-2: The correlation changes between obstacle density metric and success rate of planner
FullRange+Local Primitive after dividing the maps into groups based on the obstacle velocity.

However, the monotonic relationship between obstacle density and the success rate still
fails to exhibit consistency across the entire obstacle density range. Notably, we see
in Figure 5-2 an increase in the success rate within metric ranges of 2.0 to 3.0 and
6.0 to 7.0 as the obstacle density metric intensifies. Upon investigating these cases,
we discerned that this anomaly is the heightened success rate achieved by planners in
environments with fewer but larger obstacles compared to those with a larger number
of smaller obstacles. This phenomenon is demonstrated in Figure 5-3.
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(@) 20 obstacles with 1 m radius. (b) 10 obstacles with 1.5 m radius.

Figure 5-3: The performance of planners in two maps with the same obstacle density metric.
The map in (a) has 20 obstacles with a 1 m radius, and the map in (b) has ten obstacles with
a 1.5 m radius. The planners achieve a higher success rate in the second map with a smaller
obstacle density.

5-1-2 Traversability

The concept of traversability is yet another metric utilized for assessing the complex-
ity of maneuvering through a static environment [36, 37]. Introduced in Section 3,
traversability is described as the distance that a MAV can cover starting from a ran-
domly chosen point and moving in a randomly selected direction. In a static environ-
ment, this metric essentially equates to executing multiple tasks with different starting
positions and trajectories and calculating the average distance traversed. Given the
understanding that a densely populated environment poses greater navigational chal-
lenges, we would expect the traversability metric to have a similar performance to that
of the obstacle density metric.

This observation clarifies why the traversability and obstacle density metrics yield sim-
ilar SRCC and CV values. Analogous to the obstacle density metric, we evaluated the
traversability metric across map groups with varying obstacle velocities, as depicted
in Figure 5-5. The findings demonstrate that, within controlled environments, the
performance of the traversability metric mirrors that of the obstacle density metric.

5-1-3 Dynamic Traversability
The dynamic traversability metric is an evolution of the static traversability metric,
devised to evaluate dynamic environments by computing the traversability at a dis-

tinct sampled time step. Nevertheless, as we pointed out while discussing the static
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Figure 5-4: This figure demonstrates the correlation between traversability and obstacle density.
A strong correlation between the traversability metric and the obstacle density can be observed
with a sufficiently high sampling density.
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(a) The correlation between traversability metric and (b) The correlation between traversability metric and
success rate in all maps from the controlled map dataset. success rate in each group of maps. Each group includes
maps with the same obstacle velocity.

Figure 5-5: The correlation changes between traversability metric and success rate of planner
FullRange+Local Primitive after dividing the maps into groups based on the obstacle velocity.

traversability metric, its performance closely mirrors that of the obstacle density met-
ric. Consequently, calculating the traversability at each time step basically equates to
computing the obstacle density at each time step. This approach fails to encapsulate
the dynamic character of the environment. Hence, the dynamic traversability metric
doesn’t significantly enhance the basic traversability metric.

5-1-4 VO feasibility
The Velocity Obstacle (VO) feasibility metric, a new introduction in our study, aims
to assess the difficulty of collision avoidance in dynamic settings. Since different con-

figurations of obstacle velocities can result in substantial variations in VO feasibility
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regions, there will be notable discrepancies in metric values. Consequently, the VO
feasibility metric correlates more significantly with the success rate than traversability
and obstacle density metrics. This makes it a more reliable indicator of the difficulty
of collision avoidance in dynamic environments.

However, upon closer examination of the scatter plot of the VO feasibility metric against
each map’s success rate, as depicted in Figure 5-6, we observe the presence of distinct
layers of data points. These layers are representative of maps that exhibit different
obstacle velocities.
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Figure 5-6: The scatter plot of the VO feasibility metric (3-1-4) and the success rate of planner
FullRange+Local Primitive for each map. The layers of points correspond to the maps with
different obstacle velocities.

This figure underscores that the VO feasibility metric does not wholly encapsulate the
impact of varying obstacle velocities on collision avoidance performance. This limitation
can be traced back to the generation process of VO infeasible areas. Consider a scenario
where two maps feature an obstacle at an identical position with different velocities.
In this case, the VO infeasible area merely shifts along the direction of the obstacle’s
velocity without altering its size. This behavior is depicted in Figure 5-7. The metric’s
inability to reflect variations in the obstacle velocity inhibits its ability to accurately
gauge collision avoidance’s difficulty in dynamic environments.

5-1-5 Survivability

The Survivability metric, introduced in this study, measures the complexity of execut-
ing collision avoidance within dynamic environments. It boasts the highest SRCC and
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Figure 5-7: The VO infeasible areas for different obstacle velocities. The yellow shallow represents
the infeasible area after increasing the obstacle velocity. The size of the infeasible area does not
change compared with the original infeasible area in grey.

lowest CV values among all metrics evaluated. This finding suggests a robust relation-
ship between the survivability metric and success rate, indicating that an increase in
survivability results in a lower success rate. Moreover, the success rate remains rela-
tively consistent when evaluated under the same survivability metric. Consequently,
we can infer that the survivability metric proves to be an effective tool for gauging the
difficulty of collision avoidance in our Controlled Map Dataset.

We further tested the survivability metric in three types of uncontrolled maps to re-
lax some assumptions made in the Controlled Map Dataset. These types of maps are
characterized by varying obstacle velocities, different obstacle sizes, and maps incor-
porating the Reciprocal Velocity Obstacles (RVO) motion profiles. As illustrated in
Figures 4-14, 4-15, and 4-16, the survivability metric still displays a robust correlation
with the success rate, even under these less controlled conditions. Upon analysis of
our data, we also made a summary of how many data points lie within one standard
deviation, two standard deviations, and three standard deviations from the trend line.
The results are shown in Table 5-3.

Notably, a few outliers are evident in these figures. The following sections will delve
deeper into the reasons behind these anomalies.

In examining uncontrolled maps with differing obstacle velocities, Figure 5-8 shows that
the success rate falls below the trend line when looking at lower survivability metrics.
As the velocities of the obstacles are derived from a distribution in this case, there is
always a possibility of encountering obstacles moving at high speeds. These fast-moving
obstacles present considerable hazards, profoundly impacting collision avoidance per-
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Type of Map Within 1 ¢ | Within 2 ¢ | Within 3 ¢
Controlled 68% 95% 99.7%
Uncontrolled (Different Velocities) 76.3% 98.5% 100%
Uncontrolled (Different Sizes) 71.1% 94.8% 100%
Uncontrolled (RVO) 63.7% 92.5% 98.0%

Table 5-3: The percentage of Uncontrolled Map Dataset data points within one standard devia-
tion, two standard deviations, and three standard deviations from the Gaussian distribution fitted
in Controlled Map Dataset.

formance. However, the survivability metric may not adequately account for these
scenarios, leading to an observed deviation from the anticipated trend.
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Figure 5-8: The scatter plot displays the relationship between the survivability metric (3-1-5) and
the success rate of the planner, specifically FullRange+Local Primitive, for each map featuring
different obstacle velocities. Noticeably, at lower levels of survivability metrics (within the red
dashed rectangle), the success rate drops below the projected trend line.

In the Uncontrolled Maps with RVO motion profiles, we observe a considerable variance
in the success rate of the Global Primitive planner in Figure 4-16. However, the other
two trajectory planners demonstrate far less variance. In the original paper on Global
Primitive [14], the planner was tested in dynamic maps where the future trajectories
of all obstacles were known. Similarly, the obstacles move at constant velocities in our
Controlled Map Dataset. Once detected, their future trajectories are known. However,
the future trajectories are unknown in the Uncontrolled Maps with RVO motion pro-
files. Consequently, the Global Primitive planner requires frequent replanning, leading
to significant variance in the success rate. The other two planners, in contrast, can
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frequently replan without a substantial impact on their performance. Therefore, we
can conclude that, despite the variances observed in the Global Primitive planner, the
survivability metric remains suitable for evaluating the difficulty of collision avoidance
in the Uncontrolled Map Dataset with RVO motion profiles.

5-1-6 Global Survivability

Global Survivability is proposed to capture the local difficulty associated with collision
avoidance. However, it does not have a stronger correlation with the success rate than
the original Survivability metric. The Global Survivability metric operates by sampling
multiple positions within the map. If any of these sampled positions are found to be
in a collision state, the entire map is deemed to be in a collision state. Consequently,
most of the maps are labeled as difficult under this metric.

In Figure 4-10, we can observe such a pattern: the variance at low levels of Global
Survivability is small, implying that for maps deemed to have low difficulty, the success
rate is relatively consistent. However, at high levels of Global Survivability, the sub-
stantial variance indicates a significant discrepancy in the success rates among maps
perceived as difficult. This demonstrates the limitation of the Global Survivability
metric in accurately gauging the difficulty across various maps.

5-2 Use Case of Metrics

In this section, we delve into the applications of the Survivability metric, focusing
specifically on its role in evaluating and comparing different collision avoidance strate-
gies.

5-2-1 Comparison the Performance of Different Planners Using Survivability
Comparison of Trajectory Planners

In the experimental portion of our work, we focused on the detailed reproduction and
testing of three distinct trajectory planners: Local Primitive, Global Primitive, and
Model Predictive Control (MPC). Utilizing the Survivability metric as a comparative
measure, we can evaluate and contrast the performance of these three planners in the
context of the Controlled Map Dataset.

Figure 5-9a presents the success rates of the three trajectory planners under varying
levels of the survivability metric. It is clear that the Local Primitive planner has the
highest success rate across all levels of survivability. Comparatively, the success rate
of Global Primitive surpasses that of the Model Predictive Control (MPC) when the
survivability metric is low. However, as the survivability metric rises, the success rate

of MPC exceeds that of the Global Primitive.
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(b) Three trajectory planners’ success and deadlock rates under different survivability metrics. Each bar represents
one planner’s success and deadlock rates under one survivability metric.

Figure 5-9: The comparison of three trajectory planners using the survivability metric.

This phenomenon is further illustrated in Figure 5-9b, which displays each planner’s
deadlock rate in addition to the success rate. Under high survivability metrics, the
deadlock rate for Global Primitive sharply increases, while the deadlock rate for MPC
remains steady, regardless of the survivability level. This suggests that MPC' maintains
a higher level of robustness than Global Primitive when confronted with increasingly

challenging dynamic environments.
It can be concluded that under the assumptions we made in section 5-1 (2D space; Only
dynamic obstacles; No perception and control error), the Local Primitive planner is the

most robust. The MPC' is worse than Local Primitive when the survivability metric is
low, but it is more robust than Global Primitive when the survivability metric is high.
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Comparison of Gaze Planners

We also reproduced and experimented with several gaze planners in the experiment
part.
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gaze planners under different survivability metrics. under different survivability metrics.
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(c) The success rate of Local Primitive with different
gaze planners under different survivability metrics.

Figure 5-10: The comparison of gaze planners using the survivability metric.

Among the gaze planners being studied, the FullRange assumes the MAV has a com-
plete 360-degree observation of its surroundings, ideally representing the upper limit of
performance for all other gaze planners. In comparison, all the other gaze planners only
have a limited Field Of View (FOV). Under the assumptions we made in section 5-1
(2D space; Only dynamic obstacles; No perception and control error), the LookAhead
gaze planner performs the best across all tested scenarios. Moreover, its superiority
holds consistent across varying levels of the survivability metric, reinforcing that the
LookAhead gaze planner excels at collision avoidance in dynamic environments.

Master of Science Thesis Moji Shi



54 Discussion

5-2-2 Generating Controlled Maps with Predefined Difficulty Levels

In the preceding section, we demonstrated how the survivability metric can be employed
to compare the performance of different planners. This section will illustrate how to
generate controlled maps featuring predefined levels of survivability difficulty.

In the Controlled Map Dataset, four variables are needed to generate a controlled
map: the number of obstacles n.s, the size of obstacles 7., the velocity of obstacles
Vops, and the map ID (which determines the random seed for initialization). The first
three variables are the primary factors influencing the survivability metric. We can
investigate the relationship between these three variables and the survivability metric in
the Controlled Map Dataset. Subsequently, we can utilize this relationship to generate
controlled maps with predefined levels of survivability difficulty metric. We employ a
linear regression model to capture the relationship between the survivability metric and
these three variables:

S = f(nob57 Tobs) Uobs) = 50 + Blnobs + 62robs + BBUobs (5‘1)

The prediction outcomes from the linear regression model are visualized in Figure 5-11.
The model boasts an R? score of 0.95, indicating an excellent fit to the data. The
parameters obtained from this model are listed in Table 5-4.

Scatter plot of Predict Values and Actual values

10 o0

Predicted values

0 2 4 6 8 10
Actual Values

Figure 5-11: The prediction results of the linear regression model.

Bo B1 B2 B3
-6.014 | 0.226 | 2.646 | 1.104

Table 5-4: The fitting results of the parameters in the linear regression model
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Using the fitted model f, we have designed a Graphical User Interface (GUI) that
generates maps with a specified survivability metric S. The map generation process is
formulated as an Integer Linear Programming (ILP) optimization problem:

minimize | f(Nobss Tobs, Vobs) — S| (5-2)
s.t. ngs € Z (5-3)

10 < ngps < 30 (5-4)

0.5 < rops < 1.5 (5-5)

2 < Uy < 6 (5-6)

(5-7)

The user can input the desired survivability metric S and generate a map with the
closest survivability metric to S. Or the user can also specify one or two variables
together with the survivability metric to generate a map with the closest survivability
metric to S and the specified variable(s). Figure 5-12a and Figure 5-12b are two
examples of generating a map with the survivability metric.
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Obstacle Environment Generator

Desired Survivability Metric(0-10): |5

Obstacle Number (optional): ‘ld ‘

Obstacle Size (optional):

Obstacle Velocity (optional):

 Generate |

Obstacle Number=10
Obstacle Size=1.50
Obstacle Velocity=4.33
Actual Survivability Metric=4.72

(@) The generated map with the survivability metric of 5. The number of obstacles is specified to be 10.

Obstacle Environment Generator

Desired Survivability Metric(0-10): |7

Obstacle Number (optional): |25

Obstacle Size (optional): ‘12]

Obstacle Velocity (optional):

 Generate |

Obstacle Number=25
Obstacle Size=1.20
Obstacle Velocity=3.79
Actual Survivability Metric=6.82

(b) The generated map with the survivability metric of 7. The number of obstacles is specified to be 25, and the
radius is specified to be 1.2 m.

Figure 5-12: Two examples of generating controlled maps with predefined survivability metrics.
5-2-3 Calculating the Difficulty Level of a Map

This metric can also be easily utilized in other simulators or real-world environments
for comparing different collision avoidance methods as long as two conditions are met:

1. The environment is deterministic in its reproduction. Given a specific initializa-
tion or a predetermined set of parameters, the movement of dynamic obstacles
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within the environment remains consistent and unchanged every time the envi-
ronment is rerun.

2. It is possible to pose a robot in the environment and do the collision checking.

Figure 5-13 provides an example of calculating the survivability metric in a gazebo
simulation.

(@) The visualization of the survivability metric cal- (b) The corresponding state in the gazebo simu-
culation. The pillars represent the moving pedestri- lation environment. The world is with four moving
ans. The spheres represent the sampled MAV po- pedestrians.

sitions, the red spheres represent the sampled MAV

positions in the collision state, and the blue spheres

represent the sampled MAV positions that still sur-

vive.

Figure 5-13: The calculation of the survivability metric in a gazebo simulation environment. The
calculated survivability metric of this map is 2.3.

The methodology for calculating survivability difficulty levels offers a robust approach
to testing and analyzing various planning algorithms. It can be seamlessly integrated
as long as the environment adheres to the stated conditions, ensuring consistent dy-
namic obstacle behavior and enabling accurate collision checking. Such a framework
paves the way for consistent and reliable comparisons across different planners in varied
simulations and real-world scenarios.

5-3 Problem Difficulty

While our primary focus has been on evaluating environmental difficulty, it’s essential
to consider the broader concept of problem difficulty. The environment does not solely
determine problem difficulty; it is a composite measure influenced by a range of factors,
including specific robotic setups and task configurations. For instance, properties of the
robot, such as the size of the MAV and its maximum speed, as well as task configurations

Master of Science Thesis Moji Shi



58 Discussion

like the start and target positions, play a pivotal role in the overall challenge a planner
faces.

One noteworthy finding regarding problem difficulty is presented in this section about
the significance of the velocity ratio between the MAV and the obstacles shown in
Figure 5-14.

L0 I Success Rate

3 Deadlock Rate
I Collision Rate

B Success Rate L0
3 Deadlock Rate
I Collision Rate

0.8 0.8

0.6 1

Rate

0.4 4

0.2 0.2

0.0~
.10 15 2.0 3.0 2.0 4.0 6.0

velocity ratio Agent speed

0.33 0.5 0.67

Figure 5-14: Performance of the planner FullRange+Local Primitive under different velocity
ratios. The first figure shows that the velocity ratio between the MAV and the obstacles is a
significant factor in determining the performance of the planner FullRange+Local Primitive. The
second figure shows that given the same velocity ratio(ratio = ”{)’Zs = 1 in this case), the planner’s
performance is not significantly affected by the obstacle velocity(Agent speed).

Our research delves deep into the intricacies of the velocity ratio and its profound
impact on a planner’s effectiveness in collision avoidance. Interestingly, while the in-
herent velocities of obstacles may seem like a natural determinant of the problem’s
complexity, our results paint a nuanced picture. Specifically, when the velocity ratio
is held constant, a mere increment in obstacle velocity doesn’t automatically translate
to a heightened challenge in collision avoidance for a planner. This underscores the
intricate dance of relative speeds and their role in shaping real-world outcomes. For
instance, an obstacle moving at a high velocity may not necessarily be harder to evade
if the MAV has a corresponding increase in speed, maintaining its velocity ratio. On
the other hand, if the MAV’s speed remains stagnant while obstacle speeds increase,
the planner might face significant challenges.

Therefore, to understand a planner’s efficiency and ability to navigate dynamic en-
vironments, it’s essential to consider individual velocities and emphasize the velocity
ratio between the MAV and the obstacles. This factor, often overlooked, could be the
keystone in fine-tuning planners for optimal performance in varied scenarios.
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Chapter 6

Conclusion and Future Works

In this chapter, we will summarize the contributions of this thesis and discuss possi-
ble future work for evaluating dynamic environment difficulty for collision avoidance
problems.

6-1 Conclusion

In this thesis, we have proposed various metrics for evaluating the environmental diffi-
culty of dynamic environments for collision avoidance problems. We validate their ef-
fectiveness through a large number of experiments on our custom simulator and provide
a detailed analysis of the results, aiming to demonstrate insights into the limitations
of these metrics and their potential applications. In diving deeper into the metrics
presented in this thesis, it is crucial to understand the specific scenarios or applications
where each metric excels:

» Obstacle Density: The essence of this metric is its suitability for static environ-
ments. It provides a quick insight into the density of obstructions and barriers,
and while straightforward, its limitations become evident in dynamic environ-
ments. Our extensive testing reveals that when dynamic elements come into play,
especially those with varying velocities, the metric struggles to represent the en-
vironment’s difficulty accurately. Even when the velocities of obstacles are kept
uniform, the metric’s inadequacy persists, underscoring its best fit for purely static
settings.

o Traversability: This metric is proposed for evaluating the difficulty of static
environments. It is a more sophisticated metric than obstacle density, as it con-
siders the agent’s size and obstacles. However, it still has the same limitations
as obstacle density, as it is unsuitable for dynamic environments. The metric’s
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inability to capture the difficulty of dynamic environments is evident in our ex-
periments, where it fails to provide any meaningful insights into the difficulty of
the environment. We further investigate that when the density of traversability
samples is high, the metric can strongly correlate with Obstacle Density, further
highlighting its unsuitability for dynamic environments.

e VO Feasibility: This metric is designed to assess the challenges posed by dy-
namic environments. Nonetheless, our analysis reveals that it struggles to encap-
sulate the complexities introduced by escalating obstacle velocities. It is most apt
for situations where obstacle velocities remain consistent. In these scenarios, the
metric effectively discerns the intricacy of the environment.

o Survivability: Designed specifically to gauge the complexity of dynamic envi-
ronments, the Survivability metric stands out as the most effective tool introduced
in this thesis. Its versatility and accuracy are further confirmed through rigorous
tests across diverse scenarios. Notably, it remains robust and insightful across
environments with varying obstacle velocities, differing obstacle sizes, and when
the obstacles follow the RVO motion profile. This underscores its adaptability
and precision in evaluating dynamically challenging terrains.

In essence, the applicability of each metric is intrinsically tied to the nature of the
environment and its specific challenges. We suggest the Survivability metric for assess-
ing dynamic environment difficulty, especially when collision checks can be simulated
within the environment. Furthermore, if users can adapt their planner to our tailored
environment, they can create additional maps with predetermined difficulty levels, lead-
ing to a more comprehensive evaluation of their planning strategies. In contexts such as
real-world testing, simulating collision check becomes costly due to potential hardware
damages. Furthermore, reproducing identical environmental settings, especially ensur-
ing that dynamic obstacles maintain consistent initial positions and trajectories across
resets, can be particularly challenging. In this case, the survivability metric might not
be the most suitable choice.

For a swift assessment of a dynamic environment where obstacle velocities are relatively
consistent, both the Obstacle Density and VO Feasibility metrics serve as suitable
choices. Recognizing these subtleties allows us to select the most appropriate metric for
a given situation, ensuring a more precise evaluation of collision avoidance mechanisms
in dynamic settings.

6-2 Future Research

The landscape of collision avoidance in dynamic environments is ever-evolving, with
numerous facets still ripe for exploration. Our study has laid the groundwork, sys-
tematically evaluating various metrics to determine environmental difficulty. However,
as with any burgeoning research area, many avenues are yet to be traversed. In this
section, we outline potential future directions, aspiring to both refine the metrics we’ve
introduced and broaden the horizons of this research domain.
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6-2-1 Metrics Refinement

In this thesis, we have proposed several metrics for evaluating dynamic environment
difficulty for collision avoidance problems, and we finally pick the Survivability metric
as the most effective one and conduct a generalization test on it. However, as introduced
in Section 5-1, there are still many limitations to the testing scenarios. We can further
refine the metrics by conducting more experiments on different scenarios:

e 3D environments.
o Environments with different obstacle shapes.

o Environments with both static and dynamic obstacles.

Under these scenarios, we also need to adjust the design of our metrics to make them
more suitable for these scenarios.

6-2-2 Furture Analysis on Problem Difficulty

As mentioned in Section 5-3, the problem difficulty includes all the factors that could
affect the performance of a collision avoidance system and are not related to the prop-
erty of the collision avoidance method itself. In this thesis, we have only focused on
environmental difficulty, which is only one of the factors that could affect the per-
formance of a collision avoidance system. In the future, we can also investigate the
problem’s difficulty and try to find a way to evaluate it.

777777777777777777777777777777777777777777777777777777

Robot

Hardware

Environment

Performance

Figure 6-1: All factors that could affect the performance of a collision avoidance system. The
blue dashed rectangle represents the environmental difficulty which is the focus of this thesis. The
red dashed rectangle represents the problem difficulty which is the focus of future research.
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Appendix A

Trajectory Planning Algorithms

This appendix contains details of the algorithms used to generate the trajectories for
the UAV including the global motion primitives [14], local motion primitives [17], and
MPC [12]. All these trajectory planners share the format of inputs and outputs as
shown in Table A-1.

Input Parameter Symbol
Target Position Dr = (x4, y4)
Start Position Po = (z0,y0)
Start Velocity U
M = {mi;},
Occupancy Map 1 if not occupied
mi; = 40  if unexplored
—1 if occupied
Active Trackers T = {t_;}, t = {Pi, Ui, X, }
(a) Input parameters of the trajectory planners
Output Results Symbol
Future Trajectory F =A{pi, v;,a;}
(b) Output results of the trajectory planners
Constraint Parameters Symbol
Maximum MAV Velocity Umaz
Maximum MAV
Acceleration 4maz
MAYV Radius T

(c) Other constraint parameters of the trajectory planners

Table A-1: Inputs, outputs, and other parameters of constraints of the trajectory planners
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A-1 Global Motion Primitives

In Global Motion Primitives, the trajectories are decomposed into several motion prim-
itives, each with constant acceleration. The duration of all primitives is 7. The connec-
tion between two trajectories is defined as a node with the position and velocity of the
end of the first trajectory and the start of the second trajectory. The Global Motion
Primitives algorithm tries to expand a graph from the starting node to the goal node:

Algorithm 2 Global Motion Primitives Algorithm
1: Input: Starting position pp, starting velocity v, target position p;, duration 7', sampled
accelerations A

2: Output: Path from start to target

3: Initialize open list O with node N(pp, ¥y, 0)

4: Initialize closed list C = ()

5: while O is not empty do

6: Neurrent = node from O with the lowest cost

7 Move Neyrent from O to C

8: if Neurrent-position is close to prarger then

9: return reconstructed path from N (pp, ¥, 0) to Neurrent, add to F

10: end if

11: for each @ in A do

12: Generate trajectory 7 using @ over duration 1" starting from Ncyrrent.position and
Neurrent-velocity

13: Prews Unew = endpoint of 7

14: cOStpew = cost of Neyrrent + cost of 7

15: if 7 is collision-free and N (Phew, Unew, COStnew) is not in C then

16: Add N (Poew, Unew, COStnew) to O

17: end if

18: end for
19: end while
20: return no path found

The heuristic cost of each node is derived from the time-optimal control problem:

_2la—al 120 G- A
T3 T2 T

where p and ¢ denote the position and velocity of the node. The MAV will follow

the trajectory after getting the future trajectory F. At each timestep, the MAV will

execute the collision check based on the updated occupancy map M and the active
trackers T

C

+ pT (A-1)

15— (P + kAtG) || > v,V € T (A-2)

m(pi) # —1 (A-3)

If every point on the future trajectory is collision-free, the MAV will execute the tra-
jectory. Otherwise, the MAV will start replanning.
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A-2 Local Motion Primitives

Local Primitives do not generate full trajectories toward the target position in one shot.
Instead, they generate a motion primitive from the current position to a temporary
target position with minimum heuristic cost. The planning process can be explained
in Algorithm 3.

Algorithm 3 Local Primitives with Optimal Jerk Control

1: Input: Initial position pp, velocity 7p, and acceleration do; final acceleration @y; duration
T time steps ¢
Output: Optimal collision-free trajectory
Generate temporary target list Py
for py € Py do

Generate a trajectory 7 from pp to pj using the optimal jerk control [15]
end for
Sort temporary targets by their heuristic costs h(7) in ascending order
for each ranked temporary target do

If its trajectory is collision-free:

Return the trajectory

: end for

—_
= o

The list of temporary targets is generated by sampling around the current position of
the MAV with a fixed radius and uniformly sampled angles:

rsind

P, = {50 + [7’ o8 9} G [0,2@} (A-4)

A-3 MPC

_k
In MPC, the state of the MAV is defined as #* = [g’k] , where p* and 7% are the position

and velocity of MAV at time step k. The control input is defined as @* = {FL’“], where

@ is the acceleration of MAV at time step k. The dynamics of the MAV can be defined
as:

10 At 0 A
. =0 01 0 At 0 22|
k1 _ kook\ _ ks J )
T —f(x,u)—oo 1 olT+ At (2) U (A-5)
00 0 1 0 At
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where At is the time step. The MPC formulation is as follows:

N
i, T (@) £ T (2) (A-6)
s.t. 3 = 7(0), Veca® = f(fkfl,ﬁkfl) : (A-7)
teu, Fex, (A-8)
Vk e {1,...,N}. (A-9)

where J* is the cost function at time step k, & and X are the control input and state
constraints. For each tracked dynamic obstacles t; € T, the collision constraint is
defined as:

|7 = (i + kats) | > (A-10)

Where the constant velocity model is used to estimate the future position of the obsta-
cle, the cost function is defined as:

J* (z’f a’f) = #TQF + @ Ri* (A-11)

where ) and R are the weight matrices that can be tuned to achieve different perfor-
mance.
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