
Evaluating Dynamic Environment Difficulty for Obstacle Avoidance
Benchmarking

Supplementary Material

Moji Shi, Gang Chen, Álvaro Serra Gómez, Siyuan Wu, and Javier Alonso-Mora

I. METRICS EVALUATION

This appendix section contains details of calculation for
metrics evaluation. Assuming we have a map pool containing
n different maps, each denoted by Mi. The map pool can be
represented as M = {M1,M2, ...,Mn}. m different planners
are tested on these maps. The map difficulty metric is defined
as a function D that maps a map Mi to a real number D(Mi)
and the success rate of a planner j on map Mi is defined
as SRi j. We can introduce two quantitative indicators for
evaluating representativeness:

Spearman’s Rank Correlation Coefficient(SRCC): This
metric measures the monotonic relationship between two
variables. Principally, a good metric D(Mi) should show a
good monotonical relationship with the success rate SRi j for
each planner j. The Spearman’s Rank Correlation Coefficient
SRCC j for planner j is defined as:

SRCC j = 1−
6∑

n
i=1(R(D(Mi))−R(SRi j))

2

n(n2 −1)
(1)

where the R(D(Mi)) and R(SRi j) are the rank of D(Mi)
and SRi j in all the sampled data respectively. The SRCC j
is between −1 and 1. The larger the

∣∣SRCC j
∣∣ is, the more

monotonically related the D(Mi) and SRi j are. Since a good
difficulty metric should have this monotonical relationship
with the success rate for every planner, we will use the
average of SRCC j as the representativeness of the map
difficulty metric D(Mi):

SRCC =
1
m

m

∑
j=1

SRCC j (2)

Coefficient of Variation(CV): This metric measures the
variation of the success rate SRi j under the same map
difficulty level. We want to know whether the performance
of one specific planner under different maps with the same
difficulty level is stable. The maps are made into groups
according to the map difficulty metric. For example, if the
range of the function D is [0,10], we will divide the maps
into ten groups:

Mk = {Mi|D(Mi) ∈ [k,k+1]} (3)

For each group Mk, we can calculate the Coefficient of
Variation CVjk for planner j:

CVjk =
σ jk

µ jk
(4)

where σ jk is the standard deviation of the success rate SRi j
in group Mk and µ jk is the mean of the success rate SRi j
in group Mk. The CVjk is between 0 and 1. The smaller
the CVjk is, the more stable the performance of planner j is
under the same map difficulty level. Since we want to have
this stability for every planner, we will use the average of
CVjk as the representativeness of the map difficulty metric
Di:

CV =
1
m

m

∑
j=1

CVjk (5)

II. TRAJECTORY PLANNING ALGORITHMS

This appendix contains details of the algorithms used to
generate the trajectories for the UAV including the global
motion primitives [1], local motion primitives [2], and MPC
[3]. All these trajectory planners share the format of inputs
and outputs as shown in Table I.

Input Parameter Symbol
Target Position p⃗t = (xt ,yt)
Start Position p⃗0 = (x0,y0)
Start Velocity v⃗0

Occupancy Map
M =

{
mi j

}
,

mi j =


1 if not occupied
0 if unexplored
−1 if occupied

Active Trackers T =
{⃗

ti
}

, t⃗i =
{

p⃗i, v⃗i,Σ p⃗i ,⃗vi

}
(a) Input parameters of the trajectory planners

Output Results Symbol
Future Trajectory F = { p⃗i, v⃗i, a⃗i}

(b) Output results of the trajectory planners
Constraint Parameters Symbol

Maximum MAV
Velocity vmax

Maximum MAV
Acceleration amax

MAV Radius ru

(c) Other constraint parameters of the trajectory plan-
ners

TABLE I: Inputs, outputs, and other parameters of con-
straints of the trajectory planners

A. Global Motion Primitives

In Global Motion Primitives, the trajectories are decom-
posed into several motion primitives, each with constant
acceleration. The duration of all primitives is T . The connec-
tion between two trajectories is defined as a node with the



position and velocity of the end of the first trajectory and the
start of the second trajectory. The Global Motion Primitives
algorithm tries to expand a graph from the starting node to
the goal node:

Algorithm 1 Global Motion Primitives Algorithm

1: Input: Starting position p⃗0, starting velocity v⃗0, target
position p⃗t, duration T , sampled accelerations A

2: Output: Path from start to target
3: Initialize open list O with node N(p⃗0, v⃗0,0)
4: Initialize closed list C = /0
5: while O is not empty do
6: Ncurrent = node from O with the lowest cost
7: Move Ncurrent from O to C
8: if Ncurrent.position is close to p⃗target then
9: return reconstructed path from N(p⃗0, v⃗0,0) to

Ncurrent, add to F
10: end if
11: for each a⃗ in A do
12: Generate trajectory τ using a⃗ over duration T

starting from Ncurrent.position and Ncurrent.velocity
13: p⃗new, v⃗new = endpoint of τ

14: costnew = cost of Ncurrent + cost of τ

15: if τ is collision-free and N(p⃗new, v⃗new,costnew) is
not in C then

16: Add N(p⃗new, v⃗new,costnew) to O
17: end if
18: end for
19: end while
20: return no path found

The heuristic cost of each node is derived from the time-
optimal control problem:

C =
12∥ p⃗t − p⃗∥2

T 3 − 12⃗v · (p⃗t − p⃗)
T 2 +

4 ∥⃗v∥2

T
+ρT (6)

where p⃗ and v⃗ denote the position and velocity of the node.
The MAV will follow the trajectory after getting the future
trajectory F . At each timestep, the MAV will execute the
collision check based on the updated occupancy map M and
the active trackers T :

∥ p⃗− (p⃗i + k∆t⃗vi)∥ ≥ ri,∀ti ∈ T (7)

m(p⃗i) ̸=−1 (8)

If every point on the future trajectory is collision-free, the
MAV will execute the trajectory. Otherwise, the MAV will
start replanning.

B. Local Motion Primitives

Local Primitives do not generate full trajectories toward
the target position in one shot. Instead, they generate a
motion primitive from the current position to a temporary
target position with minimum heuristic cost. The planning
process can be explained in Algorithm 2.

Algorithm 2 Local Primitives with Optimal Jerk Control

1: Input: Initial position p⃗0, velocity v⃗0, and acceleration
a⃗0; final acceleration a⃗ f ; duration T ; time steps t

2: Output: Optimal collision-free trajectory
3: Generate temporary target list Pt
4: for p⃗tt ∈ Pt do
5: Generate a trajectory τ from p⃗0 to p⃗tt using the

optimal jerk control [?]
6: end for
7: Sort temporary targets by their heuristic costs h(τ) in

ascending order
8: for each ranked temporary target do
9: If its trajectory is collision-free:

10: Return the trajectory
11: end for

The list of temporary targets is generated by sampling
around the current position of the MAV with a fixed radius
and uniformly sampled angles:

Pt =

{
p⃗0 +

[
r cosθ

r sinθ

]
| θ ∈ [0,2π)

}
(9)

C. MPC

In MPC, the state of the MAV is defined as x⃗k =

[
p⃗k

v⃗k

]
,

where p⃗k and v⃗k are the position and velocity of MAV at
time step k. The control input is defined as u⃗k =

[⃗
ak
]
, where

a⃗k is the acceleration of MAV at time step k. The dynamics
of the MAV can be defined as:

x⃗k+1 = f⃗
(⃗

xk, u⃗k
)
=


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 x⃗k +


∆t2

2 0
0 ∆t2

2
∆t 0
0 ∆t

 u⃗k

(10)

where ∆t is the time step. The MPC formulation is as
follows:

min
x⃗1:N ,⃗u0:N−1

N

∑
k=0

Jk
(⃗

xk, u⃗k
)
+ JN (⃗

xN) (11)

s.t. x⃗0 = x⃗(0), Vecxk = f⃗
(⃗

xk−1, u⃗k−1
)
, (12)

u⃗k−1 ∈ U , x⃗k ∈ X , (13)
∀k ∈ {1, . . . ,N}. (14)

where Jk is the cost function at time step k, U and X are the
control input and state constraints. For each tracked dynamic
obstacles ti ∈ T , the collision constraint is defined as:∥∥∥p⃗k − (p⃗i + k∆t⃗vi)

∥∥∥≥ ri (15)

Where the constant velocity model is used to estimate the
future position of the obstacle, the cost function is defined
as:

Jk
(⃗

xk, u⃗k
)
= x⃗k⊤Q⃗xk + u⃗k⊤R⃗uk (16)

where Q and R are the weight matrices that can be tuned to
achieve different performance.



III. GAZE PLANNING ALGORITHM

This appendix section explains the details of the gaze
planners which update the MAV ψr yaw angle. It takes
the MAV’s current state and observation, then outputs
the yaw angle speed ψ̇r for the next time step. The
yaw angle is updated by ψ̂r = ψr + ψ̇r∆t. The direc-
tion of the updated yaw angle is denoted as d⃗r =[
cos(ψr + ψ̇r∆t) sin(ψr + ψ̇r∆t)

]
.Multiple gaze planners

are implemented in this work, including the following:

Gaze Planner Reference
LookAhead [4], [5]
LookGoal [6], [7]
Rotating -
Finean et al. [8]
Owl [2]

TABLE II: Reproduced trajectory planners.

A. LookAhead

LookAhead planner is a simple planner that aligns the
heading of the MAV to the direction of current velocity d⃗v =[
ẋr ẏr

]
. It can be formulated as the following optimization

problem:

min
ψ̇r

arccos

 d⃗r · d⃗v∥∥∥d⃗r

∥∥∥∥∥∥d⃗v

∥∥∥
 (17)

s.t. ψ̇r ∈ [−ψ̇max, ψ̇max] (18)

B. LookGoal

LookGoal planner aligns the heading of the MAV to the
direction of the target position d⃗t =

[
xt − xr yt − yr

]
. It can

be formulated as the following optimization problem:

min
ψ̇r

arccos

 d⃗r · d⃗t∥∥∥d⃗r

∥∥∥∥∥∥d⃗t

∥∥∥
 (19)

s.t. ψ̇r ∈ [−ψ̇max, ψ̇max] (20)

C. Finean et al. [8]

Finean et al. [8] is an optimization-based gaze planning
method. Two voxel grid maps are maintained. One is the
“Last Time Observed Map” ti, representing when the voxel
i is last observed. The other is the “Future Occupancy Map”
vi, which represents whether the MAV will occupy the voxel
i in the future. Each voxel is assigned the value:

vi =

{
0 if the future trajectory does not occupy the voxel
τ if the future trajectory occupies the voxel at time step τ

(21)
One example of the two grid maps at one moment is shown

in Figure 1. With the two maps, the planner calculates the
reward for each voxel i as:

ri =


c1 0 < vi ≤ τs and ti ≥ τc

c2 vi > τs and ti ≥ τc

max(c3ti,1) 0 < otherwise
(22)

(a) Two voxel grid maps maintained in [8]. The left is the
“Last Time Observed Map” ti; Darker color means the voxel
is observed more recently. The map on the right is the “Future
Occupancy Map” vi. The future trajectory is projected onto the
map. The darker color means the MAV will occupy the voxel
in the nearer future.

(b) The environment where the
two maps above are generated.

Fig. 1: Example of Oxford planner. One example of the two
grid maps in the cost function at one moment is shown.

where τs, τc, c1, c2, and c3 are hyperparameters. The planner
then selects the yaw angle velocity ψ̇r that maximizes the
reward in the FOV:

ψ̇r = argmax
ψ̇r

∑
i∈FOV (d⃗r)

ri (23)

D. Owl

Owl planner is proposed in [2]. It also considers gaze
planning as an optimization problem. Compared to the
Oxford planner, the Owl planner considers more factors in a
dynamic environment. Four directions are prioritized in four
cost functions f1 to f4: the direction of the target position,
the direction of the current velocity, the direction of the
observed dynamic obstacles, and the direction that has not
been updated for a period. The last cost function f5 is defined
so that the yaw angle velocity ψ̇r is not too large. Finally,
the gaze planning problem is formulated as a multi-objective
optimization problem:

min
ψ̇r

5

∑
i=1

λi fi(d⃗r) (24)

s.t. ψ̇r ∈ [−ψ̇max, ψ̇max] (25)



IV. EXPERIMENT RESULTS ON Dataset II

This appendix section presents details of the experiment
results of survivability metric in Dataset II. Specifically, there
will be three different categories of maps in Dataset II:

1) the environment of obstacles with various velocities
2) the environment of obstacles with various sizes
3) the environment of obstacles with a different motion

profile RVO [9]

A. Environment of obstacles with various velocities

To test the survivability metric on the environment of
various obstacles of various velocities, we generate 45 maps
in which the obstacle number is chosen from {10,20,30},
the obstacle size is chosen from {0.5,1.0,1.5}m, and the
obstacle velocity is randomly sampled from [2,6]m/s. The
survivability metric is computed for each map. The scatter
plot of the survivability metric and the success rate is shown
in Figure 2.

0 2 4 6 8 10
Survivability Difficulty Metric

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

FullRange+Local Primitive

LookAhead+MPC

Oxford+Global Primitive

Fig. 2: Scatter plot of the survivability metric and the success
rate on the environment of obstacles with various velocities.
The curves are fitted curves from Dataset I. The scatters are
the survivability metric and the success rate on Dataset II.

Here three different planners are tested on Dataset II. The
FullRange+Local Primitive and Oxford+Global Primitive
are chosen for having the best and worst performance on
Dataset I. The LookAhead+MPC is chosen for having a
different trajectory and gaze planner and increasing diversity.
The results of the proportion of data points within one stan-
dard deviation, two standard deviations, and three standard
deviations from the Gaussian distribution fitted in Dataset I
are shown in Table III.

Map Dataset Within 1 σ Within 2 σ Within 3 σ

Dataset I 68% 95% 99.7%
Dataset II (Type 1) 76.3% 98.5% 100%

TABLE III: The percentage of Dataset II data points(with
various obstacle velocities) within one standard deviation,
two standard deviations, and three standard deviations from
the Gaussian distribution fitted in Dataset I.

B. Environment of obstacles with various sizes

To test the survivability metric on the environment of
various obstacles of various sizes, we generate 45 maps in
which the obstacle number is chosen from {10,20,30}, the
obstacle velocity is chosen from {2,4,6}m/s(All obstacles
in one map have the same velocity), and the obstacle sizes
are randomly sampled from [0.5,1.5]m. The survivability
metric is computed for each map. The scatter plot of the
survivability metric and the success rate is shown in Figure
3. The testing planners are chosen the same as in the previous
section.

0 2 4 6 8 10
Survivability Difficulty Metric

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

FullRange+Local Primitive

LookAhead+MPC

Oxford+Global Primitive

Fig. 3: Scatter Plot of Survivability Metric and Success Rate
in Maps with Various Obstacle Sizes. The curve is the fitted
curve from Dataset I. The scatters are the data from Dataset
II.

The results of the proportion of data points within one
standard deviation, two standard deviations, and three stan-
dard deviations from the Gaussian distribution fitted in
Dataset I are shown in Table IV.

Map Dataset Within 1 σ Within 2 σ Within 3 σ

Dataset I 68% 95% 99.7%
Dataset II (Type 2) 71.1% 94.8% 100%

TABLE IV: The percentage of Dataset II data points(with
various obstacle sizes) within one standard deviation, two
standard deviations, and three standard deviations from the
Gaussian distribution fitted in Dataset I.

C. Environment of obstacles with RVO motion profiles

To test the survivability metric on the environment of
obstacles with RVO motion profiles, we generate 45 maps in
which the obstacle number is chosen from {10,20,30}, the
obstacle velocity is chosen from {2,4,6}m/s(All obstacles
in one map have the same velocity), and the obstacle sizes
are randomly sampled from [0.5,1.5]m. The survivability
metric is computed for each map. The scatter plot of the
survivability metric and the success rate is shown in Figure
4. The testing planners are chosen the same as in the previous
section.



0 2 4 6 8 10
Survivability Difficulty Metric

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

LookAhead+Local Primitive

LookAhead+MPC

Owl+Local Primitive

(a) Scatter Plot of Survivability Metric and Success Rate of
Local Primitive and MPC in Maps with RVO Motion Profiles.

0 2 4 6 8 10
Survivability Difficulty Metric

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

LookAhead+Global Primitive

Owl+Global Primitive

(b) Scatter Plot of Survivability Metric and Success Rate of
Global Primitive in Maps with RVO Motion Profiles.

Fig. 4: The environment of obstacles with RVO motion
profiles.

The results of the proportion of data points within one

standard deviation, two standard deviations, and three stan-
dard deviations from the Gaussian distribution fitted in
Dataset I are shown in Table V.

Type of Map Within 1 σ Within 2 σ Within 3 σ

Controlled 68% 95% 99.7%
Uncontrolled (RVO) 63.7% 92.5% 98.0%

TABLE V: The percentage of Dataset II data points(with
RVO motion profile) within one standard deviation, two
standard deviations, and three standard deviations from the
Gaussian distribution fitted in Dataset I.

REFERENCES

[1] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2872–2879.

[2] G. Chen, W. Dong, X. Sheng, X. Zhu, and H. Ding, “An active sense and
avoid system for flying robots in dynamic environments,” IEEE/ASME
Transactions on Mechatronics, vol. 26, no. 2, pp. 668–678, 2021.

[3] H. Zhu and J. Alonso-Mora, “Chance-constrained collision avoidance
for mavs in dynamic environments,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 776–783, 2019.

[4] C. Lim, B. Li, E. M. Ng, X. Liu, and K. H. Low, “Three-dimensional
(3D) Dynamic Obstacle Perception in a Detect-and-Avoid Framework
for Unmanned Aerial Vehicles,” in 2019 International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 996–1004.

[5] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Transactions
on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.

[6] J. Tordesillas, B. T. Lopez, M. Everett, and J. P. How, “Faster: Fast and
safe trajectory planner for navigation in unknown environments,” IEEE
Transactions on Robotics, vol. 38, no. 2, pp. 922–938, 2021.

[7] A. Patel, B. Lindqvist, C. Kanellakis, and G. Nikolakopoulos, “Fast
Planner for MAV Navigation in Unknown Environments Based on
Adaptive Search of Safe Look-Ahead Poses,” in 2022 30th Mediter-
ranean Conference on Control and Automation (MED).

[8] M. N. Finean, W. Merkt, and I. Havoutis, “Where should i look?
optimized gaze control for whole-body collision avoidance in dynamic
environments,” IEEE Robotics and Automation Letters, vol. 7, no. 2,
pp. 1095–1102, 2021.

[9] J. van den Berg, Ming Lin, and D. Manocha, “Reciprocal Velocity
Obstacles for real-time multi-agent navigation,” in 2008 IEEE Interna-
tional Conference on Robotics and Automation, pp. 1928–1935.


